3 resultados para Embankment Model Tests

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Freshwater ecosystems are highly dynamic and change on time-scales that range from a few hours to several months. The development of models that simulate these processes is often hampered by the lack of sufficient data to parameterize the processes and validate the models. In this article, I review some of the challenges posed by this lack of information and suggest ways in which they can be met by using automatic monitoring systems. One of these studies is the project tempQsim (EVK1-CT2002-00112) funded by the European Commission. In this project, detailed field and model analyses have been performed at eight catchment study sites in south and south-east Europe. A number of perceptual models for the study sites have been established, and results are being used to improve selected catchment models and provide a more adequate description of pollution dynamics. Results from the extensive field studies and model tests are now being used to derive recommendations for more tailored monitoring concepts in highly dynamic, but ‘data scarce’ environments, such as are frequently found in Mediterranean river basins. The author includes implications of the EU Water Framework Directive on monitoring methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.