2 resultados para Elevated highways

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial bottom trawls often have sweeps to herd fish into the net. Elevation of the sweeps off the seaf loor may reduce seafloor disturbance, but also reduce herding effectiveness. In both field and laboratory experiments, we examined the behavior of flatfish in response to sweeps. We tested the hypotheses that 1) sweeps are more effective at herding flatfish during the day than at night, when fish are unable to see approaching gear, and that 2) elevation of sweeps off the seafloor reduces herding during the day, but not at night. In sea trials, day catches were greater than night catches for four out of six flatfish species examined. The elevation of sweeps 10 cm significantly decreased catches during the day, but not at night. Laboratory experiments revealed northern rock sole (Lepidopsetta polyxystra) and Pacific halibut (Hippoglossus stenolepis) were more likely to be herded by the sweep in the light, whereas in the dark they tended to pass under or over the sweep. In the light, elevation of the sweep reduced herding, and more fish passed under the sweep. In contrast, in the dark, sweep elevation had little effect upon the number of fish that exhibited herding behavior. The results of both field and laboratory experiments were consistent with the premise that vision is the principle sensory input that controls fish behavior and orientation to trawl gear, and gear performance will differ between conditions where flatfish can see, in contrast to where they cannot see, the approaching gear.