6 resultados para Electrolytic corrosion
em Aquatic Commons
Resumo:
The results of investigations into the cause of an accelerated corrosion of copper sheathing and keel cooling pipe of a 36' wooden trawler are reported. The corrosion is attributed to the stray electric currents originating from the electrical wiring system. The sources of stray currents and the remedial measures have been suggested.
Resumo:
A detailed study on arsenical creosote with reference to leaching, corrosion and anti-borer properties was carried out. Results showed that aging had very little effect on the preservative which suggested better fixation of the preservative into the wood. Corrosion of mild steel, galvanised iron, aluminium-magnesium alloy (M57S) and copper panels in the preservative was found to be negligible. Normal creosote and low temperature creosote of Regional Research Laboratory, Hyderabad, both fortified with arsenic trioxide resisted borer damage on wooden panels for a period of over five months in the port of Cochin. The performance of low temperature creosote fortified with arsenic was found to be equally satisfactory when compared to normal creosote fortified in the same manner. A loading of 208.6 Kgs/ml³ for Haldu (Adina cordifolia) and 138 Kgs/m³ for Mango (Mangifera indica) in the case of normal creosote and 177 Kgs/m³ for Mango the case of RRL creosote were found to be sufficient for treating the wood.
Resumo:
Although high tensile brassess of copper-zinc alloys (Manganese bronze) find extensive use in all marine applications, under aggressive sea-water, marine propellers cast out of such an alloy frequently suffer heavy corrosion damages due to dezincification. An interesting case history where a number of propellers have undergone dezincification in the Cochin backwaters is narrated in this paper.
Resumo:
Some presently used anti-fouling materials contain metals and other compounds, which are toxic in the environment. Coating products are not always stable, and there is a resulting pollution hazard. In particular if surfaces are poorly prepared and manufactures' instructions are not closely followed the application of anti-fouling substances becomes pointless and dangerous. In addition the salinity, constant biological activity and suspended particles make seawater a highly corrosive material in its own right.
Resumo:
The corrosion of ETP copper in natural seawater and putrid seawater has been studied. The corrosion rates and the sulphide content were monitored at regular intervals. In the absence of oxygen in the putrid media, the presence of sulphide favoured a reduction in the corrosion rate.
Resumo:
Electroless coating is much appropriate process at engineering surface. Since the discovery of electroless nickel-phosphorus coating in 3996, due to technical and economic advantages as well as desirable characteristics such as resistance to corrosion, abrasion and a high hardness has found wide application at engineering industries. Properties of electroless nickel-phosphorus coating depend on the characteristics of the used bath and heat treatment. In this study, optimal conditions and concentration of sodium citrate, sodium acetate and lactic acid in the bath of electroless nickel-phosphorus coating to the steel ck67 surface was determined. Structure, chemical composition and phases occurring in the coating were investigated using Scanning Electron Microscope (SEM) and X-ray diffraction analysis (XRD). The corrosion behavior of coatings in solution 3.5٪ NaCl was studied using electrochemical. The results showed that corrosion resistance of the coating with composition sodium citrate, sodium acetate and lactic acid decreased respectively.