3 resultados para Elagabalus, Emperor of Rome, 204-222.
em Aquatic Commons
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
We have studied the reproductive biology of the goldlined seabream (Rhabdosargus sarba) in the lower Swan River Estuary in Western Australia, focusing particularly on elucidating the factors influencing the duration, timing, and frequency of spawning and on determining potential annual fecundity. Our results demonstrate that 1) Rhabdosargus sarba has indeterminate fecundity, 2) oocyte hydration commences soon after dusk (ca. 18:30 h) and is complete by ca. 01:30−04:30 h and 3) fish with ovaries containing migratory nucleus oocytes, hydrated oocytes, or postovulatory follicles were caught between July and November. However, in July and August, their prevalence was low, whereas that of fish with ovaries containing substantial numbers of atretic yolk granule oocytes was high. Thus, spawning activity did not start to peak until September (early spring), when salinities were rising markedly from their winter minima. The prevalence of spawning was positively correlated with tidal height and was greatest on days when the tide changed from flood to ebb at ca. 06:00 h, i.e., just after spawning had ceased. Because our estimate of the average daily prevalence of spawning by females during the spawning season (July to November) was 36.5%, individual females were estimated to spawn, on average, at intervals of about 2.7 days and thus about 45 times during that period. Therefore, because female R. sarba with total lengths of 180, 220, and 260 mm were estimated to have batch fecundities of about 4500, 7700, and 12,400 eggs, respectively, they had potential annual fecundities of about 204,300, 346,100 and 557,500 eggs, respectively. Because spawning occurs just prior to strong ebb tides, the eggs of R. sarba are likely to be transported out of the estuary into coastal waters where salinities remain at ca. 35‰. Such downstream transport would account for the fact that, although R. sarba exhibits substantial spawning activity in the lower Swan River Estuary, few of its early juveniles are recruited into the nearshore shallow waters of this estuary.
Resumo:
A study on the effect of stocking density on growth and survival of nona tengra (Mystus gulio) was carried out in brackishwater earthen nursery ponds (2 decimal each) for a period of 42 days. Five-day old captive bred tengra post-larvae (ABL: 4.53±0.83 mm and ABW:3.33 mg) were stocked at four different densities of 200/m² (Treatment-1), 250/m² (Treatment-2), 350/m² (Treatment-3) and 450/m² (Treatment-4). Fries were fed twice a day with a mixture of fine rice bran, mustard oil cake and fishmeal at the ratio of 2:1:1. The specific growth rate (SGR) of larvae did not vary significantly (p>0.05) between T1 (5.096% mg/day) and T2 (5.08% mg/day), but it was found significantly (p<0.05) higher from T3 (4.98% mg/day) and T4 (4.91% mg/day), respectively. The final survival rates of 89.25±5.41% in T1 and 88.72±6.09% in T2 were found similar (p>0.05), but significantly higher (p<0.05) than those of, 76.20±4.77% in T3 and 70.34±5.71% in T4. The results indicate that 5-day old hatchery bred nona tengra post-larvae can be nursed in earthen pond at a stocking density of 200-250/m².