12 resultados para Effective Reproduction Number
em Aquatic Commons
Resumo:
The study describes the main causes of captures and productions decreasing of swimming crab Callinectes amnicola (Decapoda Portunidae) in Aby lagoon complex. For that, docks of two Sub Prefectures of Adiaké and Assini-Mafia respectively including the villages of Adiaké, Anga, Assomlan, Epleman, Aby and Man-Man, M'Bratty, Assini-Ngouankro and Assini-Mafia were studied from 2006 to 2009 and completed with previous results obtained from 1988 to 2005. Field investigators were identified by site/village and they recorded daily activities of fishermen (number of effective fishermen, number of gears and area of fishing, duration of fishing, types and quantity of bait) and landing of swimming crabs. During recent period of the study, total production decreased from 3742 tons in 2006 to 1500 tons in 2009. Matrix correlations and correlation analysis indicated that this downward trend was due to the increase of the number of fishermen, number of fishing gear, the decrease in female crabs capture and degradation of the environment related to gradual closure of the Assini-Mafia channel. Despite this decline, total production in Aby lagoon remained high compared to the productions of some lagoons of the country and the region. Given the importance of fishing swimming crabs in Aby lagoon, since it concerns many young people and it is a source of income, stringent measures for sustainable and responsible management must be taken and implemented as part of a co-management plan involving all stakeholders to sustainably manage the resource
Resumo:
A total of 361 caudal fin samples were collected from adult A. stellatus specimens caught in the north Caspian Sea, including specimens from Kazakhstan (Ural River), Russia (Volga River), Azerbaijan (Kura River), specimens caught in the south Caspian Sea including specimens from Fishery Zone 1 (from Astara to Anzali), Fishery Zone 2 (from Anzali to Ramsar), Fishery Zone 3 (from Nowshahr to Babolsar), Fishery Zone 4 (from Miyankaleh to Gomishan) as well as from specimens caught in Turkmenistan (all specimens were collected during the sturgeon stock assessment survey). About 2 g of fin tissue was removed from each caudal fin sample, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using phenol-chloroform method. The quality and quantity of DNA was assessed using 1% Agarose gel electrophoresis and Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 paired microsatellite primer. PCR products were electrophoresed on polyacrylamide gels (6%) that were stained using silver nitrate. Electrophoretic patterns and DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected heterozygosity and observed heterozygosity allele number, and the effective allele number, genetic similarity and genetic distance, FST and RST were calculated. The Hardy Wienberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendrogram for genetic distances and identities were calculated using TFPGA program for any level of the hierarchy. It is evident from the results obtained that the 15 paired primers studied, polymorphism was observed in 10 pairs in 12 loci, while one locus did not produce DNA bands. Mean allele number was 13.6. Mean observed and expected heterozygosity was 0.86 and 0.642, respectively. It was also seen that specimens from all regions were not in Hardy Wienberg Equilibrium in most of the loci (P≤0.001). Highest Fst (0.063) was observed when comparing specimens from Fishery Zone 2 and Fishery Zone 4 (Nm=3.7) and lowest FST (0.028) was observed when comparing specimens from the Volga River and those from the Ural River (8.7). Significant differences (P<0.01) were observed between RST recorded in the specimens studied. Highest genetic distance (0.604) and lowest genetic resemblance (0.547) were observed between specimens from Fishery zones 2 and 4. Lowest genetic distance (0.311) and highest genetic resemblance (0.733) was observed between specimens from Turkmenistan and specimens from Fishery zone 1. Based on the genetic dendrogeram tree derived by applying UPGMA algorithm, A. stellatus specimens from Fishery zone 2 or in other words specimens from the Sepidrud River belong to one cluster which divides into two clusters, one of which includes specimens from Fishery zones 1, 3 and 4 and specimens from Turkmenistan while the other cluster includes specimens from Ural, Volga and Kura Rivers. It is thus evident that the main population of this species belongs to the Sepidrud River. Results obtained from the present study show that at least eight different populations of A. stellatus are found in the north and south Caspian Sea, four of which are known populations including the Ural River population, the Volga River population, the Kura River population and the Sepidrud River populations. The four other populations identified belonging to Fishery zones 1, 3, and 4 and to Turkmenistan are most probably late or early spawners of the spring run and autumn run of each of the major rivers mentioned. Specific markers were also identified for each of the populations identified. The Ural River population can be identified using primers Spl-68, 54b and Spl-104, 163 170, 173, the Volga River population can be identified using primers LS-54b and Spl-104, 170, 173 113a and similarly the population from the Kura River can be identified using primers LS-34, 54b and Spl-163, 173 and that from the Sepidrud River can be identified using primers LS-19, 34, 54b and Spl-105, 113b. This study gives evidence of the presence of different populations of this species and calls for serious measures to be taken to protect the genetic stocks of these populations. Considering that the population of A. stellatus in Fishery zone 2 is an independent population of the Sepidrud River in the Gilan Province, the catch of these fishes in the region needs to be controlled and regulated in order to restore the declining stocks of this species.
Resumo:
The genetic structure of pikeperch (Sander lucioperca) and perch (Perca fluviatilis) populations was studied using microsatellite technique. A total of 207 specimens of adult pikeperch were collected from Aras dam (57 specimens), Anzali wetland (50 specimens), Talesh (50 specimens) and Chaboksar (50 specimens) coasts. Also a total of 158 specimens of adult perch were collected from Anzali (Abkenar (50 specimens)and Hendekhale(48 specimens)) and Amirkolaye(60 specimens) wetlands. About 2 g of each specimen's dorsal fin was removed, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using ammonium-acetate method. The quality and quantity of DNA was assessed using 1% agarose gel electrophoresis. Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 pairs of microsatellite primers. PCR products were electrophoresed on poly acryl amide gels (6%) that were stained that were stained using silver nitrate. DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected and observed heterozygosity , allele number and the effective allele number, genetic similarity and genetic distance, Fst, Rst, Hardy Weinberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendogram for genetic distances and identities were calculated using TFPGA program for any level of hierarchy. The results for P. fluviatilis showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 4.1±1.1 and mean observed and expected heterozygosity was 0.56±0.12 and 0.58±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.095) with Nm=2.37 was observed between Hendekhale and Amirkolaye and the lowest Fst (0.004) with Nm=59.31 was observed between Abkenar and Hendekhale. According to AMOVA Significant difference (P<0.05) was observed between recorded Rst in the studied regions in Anzali and Amirkolaye lagoons. In another words there are two distinct populations of this species in Anzali and Amirkolaye lagoons. The highest genetic distance (0.181) and lowest genetic resemblance (0.834) were observed between specimens from Hendekhale and Amirkolaye and the lowest genetic distance (0.099) and highest genetic 176 resemblance (0.981) were observed between specimens from Abkenar and Hendekhale. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Anzali and Amirkolaye wetlands have the same ancestor. On the other hand there is no noticeable genetic distance between the specimens of these two regions. Also the results for S. lucioperca showed that from 15 pair of primers that were examined 6 polymorphic and 7 monomorphic loci were produced, while 2 loci didn't produce any DNA bands. Mean allele number was 3.0±0.6 and mean observed and expected heterozygosity was 0.52±0.21 and 0.50±0.14 respectively. It was also seen that specimens from all regions were not in Hardy Weinberg Equilibrium in some of loci (P<0.001). Highest Fst (0.093) with Nm=2.43 was observed between Aras dam and Anzali wetland and the lowest Fst (0.022) with Nm=11.27 was observed between Talesh and Chaboksar coasts. Significant differences (P<0.05) were observed between recorded Rst in the studied regions exept for Talesh and Chaboksar Coasts. In another words there are three distinct populations of this species in Caspian sea, Anzali wetland and Aras dam. Highest genetic distance (0.110) and lowest genetic resemblance (0.896) were observed between specimens from Aras dam and Anzali wetland and the lowest genetic distance (0.034) and highest genetic resemblance (0.966) were observed between specimens from Talesh and Chaboksar coasts. Based on the genetic dendogram tree derived by applying UPGMA algorithm, specimens from Talesh and Chaboksar coasts have the lowest genetic distance. On the other hand the main population of this species belongs to Anzali wetland. Phylogenetic relationship of these two species was inferred using mitochondrial cytochrome b gene sequencing. For this purpose 2 specimens of P. fluviatilis from Anzali wetland, 2 specimens of S. lucioperca from Aras dam and 2 specimens of S. lucioperca from Anzali wetland were sequenced and submitted in Gene Bank. These sequences were aligned with Clustal W. The phylogenic relationships were assessed with Mega 4. The results of evolutionary history studies of these species using Neighbor-Joining and Maximum Parsimony methods showed that the evolutionary origin of pikeperch in Aras Dam and Anzali wetland is common. On the other hand these two species had common ancestor in about 4 million years ago. Also different sequences of any region specimens are supposed as different haplotypes. 177 As a conclusion the results of this study showed that microsatellite and mtDNA sequencing methods respectively are effective in genetic structure and phylogenic studies of P. fluviatilis and S. lucioperca.
Resumo:
Over a decade ago, in August 1977, the First Marine Mammal Stranding Workshop was convened in Athens, Georgia. That workshop, organized by j.R. Geraci and D.J. St. Aubin, not only considered biology and pathology of stranded marine mammals, but it also served as a springboard for the formation of regional marine mammal stranding networks in the United States. The ramifications have been extremely important to the field of marine mammalogy since, for some species, examination or rehabilitation of stranded specimens serves as virtually the only source of information on distribution, anatomy, physiology, reproduction, and pathology. The First Marine Mammal Stranding Workshop led to increased awareness of the marine mammals themselves, as well as the logistic and legal factors associated with effective handling of the animals. A number of individuals indicated that they felt that a Second Marine Mammal Stranding Workshop held prior to the Seventh Biennial Conference on the Biology of Marine Mammals (Miami, Florida; December 1987) would be both timely and productive. Accordingly, we organized the workshop and scheduled it to occur on 3-5 December. Our goals for the workshop were several, including 1) providing descriptions of some research, especially new techniques, regarding stranded marine mammals; 2) providing a forum where scientists could interact and possibly initiate cooperative research activities; 3) presenting information regarding procedures used effectively to handle stranded animals; 4) assessing ways to standardize data and specimen collection, archiving, and retrieval; and 5) providing a forum for assessing accomplishments and status of regional stranding networks to date, as well as for making recommendations regarding future activities of the networks. Nearly 100 individuals representing Federal and State governments, academic institutions, the oceanarium industry, consulting groups, conservation organizations, and the private sector attended the workshop (see Workshop Participants, this volume). (PDF file contains 166 pages.)
Resumo:
This paper attempts to review the literature on Gammarus and examine how it allocates its internal resources when producing eggs. There is an extensive literature on the fecundity of freshwater species but almost nothing is known about the sizes and energy contents of the eggs. More is known for saltwater species, in which the mean number of eggs per brood is inversely proportional to mean egg size and directly proportional to the female's body size. Theoretical aspects of egg size, numbers and reproductive effort are examined, along with the relation between sizes of eggs, broods and female body size. The reproductive effort and breeding cycles of both saltwater and freshwater species are reviewed, and reproductive strategies assessed.
Resumo:
Different rearing facilities (concrete tanks, pens and ponds) were tested for suitability as spawning environments. The concrete tanks and the pens in the lagoon gave the best results as to the number of spawns obtained. Of the three types of spawning devices tested, containers with a 150 mm opening at one of the two ends were preferably used by the fish. The brooders in the spawning facilities spontaneously entered the spawning containers to deposit their eggs without external human intervention. Actual fecundity estimates ranged from 9805 to 40597.
Resumo:
We propose an extended form of the von Bertalanffy growth function (VBGF), where the allocation of surplus energy to reproduction is considered. Any function can be used in our model to describe the ratio of energy allocation for reproduction to that for somatic growth. As an example, two models for energy allocation were derived: a step-function and a logistic function. The extended model can jointly describe growth in adult and juvenile stages. The change in growth rate between the two stages can be either gradual or steep; the latter gives a biphasic VBGF. The results of curve fitting indicated that a consideration of reproductive energy is meaningful for model extension. By controlling parameter values, our comprehensive model gives various growth curve shapes ranging from indeterminate to determinate growth. An increase in the number of parameters is unavoidable in practical applications of this new model. Additional information on reproduction will improve the reliability of model estimates.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
As the most of the fish resources are known and exploited, protecting their generation is of the greatest importance. Aquaculture is one of the efficient procedures in protecting and reviving fish resources and knowing about the reproductive cycle and gonads development has an important role in approaching this aim. Liza abu belongs to the family Mugilidae that according to its resistance to the environmental condition and its fast growth , can be introduced as a fish with economical value. As there is no scientific data on the reproductive biology of this species , study on the reproductive biology and gonad development is considered as the aim of this research . For this purpose , 360 samples of this species were investigated during the period from February 2007 to January 2008 in Khozestan Province . After studing morphological and histological characteristics of gonad specimen , they were prepared through histological method. Samples were prepared through usual histological method and studied under light microscope. According to the results, the maturity stages of male and female Liza abu were separated to six different successive stages. In ovaries , these stages were as follow : In stage І, the oocytes were small , this stage was observed from July to October . In stage ІІ, considerable growth was observed in the oocytes . This stage was observed from October to January . In stage III, due to vitellogenesis, the maximum growth was observed and three layers of theca, granullosa and follicle cells were visible. This stage was observed during January and February . In stage IV, migration of germinal vesicle was observed and due to hydration of the oocytes , their diameter was increased. The ovaries were yellowish and in maximum size and ovules could be easily observed with naked-eye . This stage was observed in February and March . In stage V, spawning occured. This stage was observed in April . In stage VI, ovaries consisted of immature and atretic oocytes and also empty follicles. This stage was observed in May and June. In testes , these stages were as follow : In stage I , the testes were small in size and contained the spermatogonia which were the only cellular components.This stage was observed in August and September . In stage II (maturing virgin ) , the spermatogonia and the primary spermatocytes were visible. This stage was observed in October . In stage III (developing), intensive spermatogenesis was occured and the primary and the secondary spermatocytes were the most visible cells during this stage .This stage was observed from November to January. In stage IV(developed), cells of all stages of spermatogenesis could be seen but the secondary spermatocytes and spermatids were in large number. This stage was observed from January to March. In stage V , the testes were filled with sperms. This stage was observed in March and April .In stage VI, residual spermatozoa and the spermatogonia were visible in the testes. This stage was observed from May to August. According to cyclic changes in GSI, sexual maturation in breeding begins in January and spawning occurs in April. The ova diameter ranged from 30.75 μ in stage I to 472.19 μ in stage IV. In this study , the sex ratio was 1:2.7, and male and female percentage were 27.02% and 72.98% respectively. This means that females predominate males. In this study absolute fecundity was calculated and changing between 30805.44 to 431247.3 was observed and absolute fecundity was calculated 111275.3 in average.
Resumo:
The present study with headline investigation on reproduction in two species of crab Eriphia sebana and Ocypode saratan was carried out in the intertidal zone of Chabahar in thirteen month from December 2004 to December 2005. Checked samplings have been taken, 45 number Crab monthly from any four stations by manual or use trap. During this study the following subjects were measured: temperature range and salinity, measurable coast granule, determination of sex ratio, relations carapace width with carapace length, Carapace width with total body weight, Gonad weight, gonadosomatic index, condition factor, gastrosomatic index, investigation content in stomach, LM50, growth parameters, plenty distribution length and width and gonad weight and total body weight. Studied on measurable coast granule were expressed that Ocypode saratan in Desalination station, were nest in soils equable sand and this quantity were confirmed in Pozm station. Sex ratio were assign in desalination area and Pozm M: F 0/44:0/56 and in Tiss and Chabahar M:F 0/45:0/55. Carapace length and carapace width (cm) and body weight (g) Furthest were designated in Ocypode saratan within carapace width sequential: In female: 5/42-6/15-105/13 and in male: 5/53-6/25-108/91 and in Eriphia sebana within Tiss area sequential: in female: 5/12-5/94-110/21 and in male 5/14-60/01-114/37. Have been linear relationship between carapace length and carapace width and equaled CW=aCL+b. Weight growth in two species were be modal and equaled BW=aCLb And increased crab weight by built up carapace width. Maximum gonad weight in Ocypode saratan within Desalination area in female have been outcome 3/39 and in male 0/84g and in Eriphia sebana extreme within Tiss during may in female were be 4/18 and in male 1/1g. Stomach content in Eriphia sebana were involved a black until half-purplish liquid and yellowish in Ocypode saratan. Stomach contents identifiable were being in four groups: Molluscoid, Crustacean, Plankton and Fish. Carapace width during the first year of maturation have been LM50:3/77 in Desalination area and LM50:3/92 in Pozm for Ocypode saratan and LM50:4/26 in Tiss and LM50:4/62 in Chabahar. Ability spawning in Eriphia sebana within Tiss has been CW=4/17cm and in Ocypode saratan within Desalination area CW=4/23cm. Maximun value of Loo for Eriphia sebana was equal 59/67 and growth factor K=0/68 within Tiss and Loo =61/64, K=0/65 for Ocypode saratan within Desalination area. Maximun GSI and GI have been within Desalination area and Tiss and minimum within Pozm and Chabahar. The maturity stages of two species were classifed into six stages. Review on GSI, CF have been showed that relation with temperature and salinity and definer in two species have been spawned in two period that Maximun in spring premier than autumn.
Resumo:
In the present research, a total of 207 pieces of fish from 25 sampling stations in Gilan Province coasts in the years 2001-2002 were biologically studied in terms of their growth and development, reproduction and feeding. The average length and weight of the fishes are increased, as they get older. The highest index of length and weight growth is observed in the years 1 to 2. As the age increases, gradient of length and weight growth diagrams decrease. In studying the relation between length and weight, it was observed that proportionate to the total length, the weight is increased progressively. The fatness coefficient index in the initial years of life and prior to maturity is higher than the post maturity period. As the age increases, the decrease of this index is observable. The fatness coefficient index rate is directly related to index of fullness. The highest Gonadosomatic Index is seen in the months of June and July, i.e. at the times of spawning; and the lowest index rate is observed in the months of November and December. The appropriate temperature for reproduction of these species is from 18 to 22 degree centigrade. The Gonadosomatic Index is higher in spring and summer seasons as compared with autumn and winter. Besides, as the fishes become aged, the amount of the said index increases in a manner that the gradient of it in the years to maturity is less than the maturity time and thereafter. Sexual maturity stages in different months are directly related to Gonadosomatic index, and increase as the age increases. The sexual ratio of male fishes to the female fishes in terms of number is plus one prior to maturity; about one at the time of maturity and minus after maturity. In general the frequency of male fishes as compared with female fishes in all group ages is approximately two times. The fecundity mean, and the diameter and the rate of eggs will substantially increase, as the Gonadosomatic index rises. The maturity age in the male fishes is 3 to 4 years and in female fishes is 4 to 5 years. The spawning of this species in rivers occurs repeatedly and in different time intervals, and do not take place once (Asyncronous). The Gastrosomatic index is directly related to index of fullness and will decrease, as the age increases. The index of fullness is relatively the months of April and May. The underlying reason is the need of the fishes to energy for reproduction. As the spawning time commences, the index of fullness moves down and the downward direction continues. After spa g mg and reduction of the volume of energy in the body, the index of fullness rises, and it will be substantially high until the beginning of fall. In fall and winter as it gets cold, the index of fullness moves downward and the body fat deposits are used. A correlation is shown between the changes in vacuity index and fullness indices. This means that as the fullness index rises, the vacuity index decreases, and vice versa. The Hepatosomatic index prior to the reproduction is at the highest amount and after spawning is at the lowest. No correlation is observed between the fullness and Hepatosomatic indices. In other words reproduction is an inherent and instinct originated matter; and its cycle goes on, alternately and in an orderly manner, upon completion of germinal cells, even when it coincides with reduction or stoppage of somatic cell growth. The rising trend of Hepatosomatic starts in August and will continue until the next July. The volume of fat around digestive tract is severely reduced in early spring and this trend will reach its apex in summer season. In the cold seasons, i.e. the fall and winter, the accumulation of fat around digestive tract increases. Consequently, a meaningful and inverse relation is observed between index of fullness, also the progress of sexual maturity stages and the volume of fat.
Resumo:
The present study with headline investigation on reproduction in two species of Crab Eriphia sebana and Ocypode saratan was carried out in the intertidal zone of Chabahar in thirteen month from December 2004 to December 2005. Checked samplings have been taken, 45 number Crab monthly from any four stations by manual or use trap. During this study the following subjects were measured: Temperature range and salinity, Measurable coast granule, Determination of sex ratio, Relations carapace width with carapace length, Carapace width with total body weight, Gonad weight, gonadosomatic index, condition factor, gastrosomatic index, investigation content in stomach, LM50, Growth parameters, plenty distribution length and width and gonad weight and total body weight. Studied on measurable coast granule were expressed that Ocypode saratan in Desalination station, were nest in soils equable sand and this quantity were confirmed in Pozm station. Sex ratio were assign in desalination area and Pozm M: F 0/44:0/56 and in Tiss and Chabahar M: F 0/45:0/55. Carapace length and carapace width (cm) and body weight (g) Furthest were designated in Ocypode saratan within carapace width sequential: female: 5/42-6/15-105/13 and male: 5/53-6/25-108/91 and in Eriphia sebana within Tiss area sequential: female: 5/12-5/94-110/21 and male 5/14-60/01-114/37. Have been linear relationship between carapace length and carapace width and equaled CW = a CL + b. Weight growth in two species were be modal and equaled BW= aCLb and increased Crab weight by built up carapace width. Maximum gonad weight in Ocypode saratan within desalination area in female have been outcome 3/39 and in male 0/84g and in Eriphia sebana extreme within Tiss during may in female were be 4/18 and in male 1/1g. Stomach content in Eriphia sebana were involved a black until half-purplish liquid and yellowish in Ocypode saratan. Stomach contents identifiable were being in four groups: Molluscoid, Crustacean, Plankton and Fish. Carapace width during the first year of maturation have been LM50:3/77 in Desalination area and LM50:3/92 in Pozm for Ocypode saratan and LM50:4/26 in Tiss and LM50:4/62 in Chabahar. Ability spawning in Eriphia sebana within Tiss has been CW=4/17cm and in Ocypode saratan within Desalination area CW=4/23cm. Maximun value of Loo for Eriphia sebana was equal 59/67 and growth factor K=0/68 within Tiss and Loo =61/64 , K=0/65 for Ocypode saratan within Desalination area. Maximun GSI and GI have been within Desalination area and Tiss and minimum within Pozm and Chabahar. The maturity stages of two species were classifed into six stages. Review on GSI, CF have been showed that relation with temperature and salinity and definer in two species have been spawned in two period that Maximun in spring premier than autumn.