5 resultados para Ecologically sustainable construction
em Aquatic Commons
Resumo:
This case study describes the present status and trends, and provides recommendations for the improvement of aquatic resources management within Hon Mun Marine Protected Area (MPA), Nha Trang Bay, Khanh Hoa Province, Vietnam. The case study also evaluates options for improving the livelihoods of local villagers through the development of ecologically sustainable aquaculture and fisheries, which include diversification following careful selection and trial of appropriate culture species, and application of “best practice” culture methods. (Pdf contains 43 pages).
Resumo:
The study was an endeavor to bring forward a concise, factual description of the salient features of the present status of artisanal fisheries resources and its management for sustainable development of fishing communities in Teknaf coast, Cox’s Bazar, Bangladesh. This study was conducted through 14 fishing villages of 4 Unions in Teknaf Upazila. As a hub of various fisheries deeds, a comprehensive coastal fisheries census, conducted on the coast during the study period, revealed that about 566 fishing fleet of two types, 1263 fishing gears of seven kinds, 6466 fishermen were being involved in fishing at Naaf river estuary. The catch composition of the coastal fishing was found 52 finfish species, 10 shrimp and 3 crabs. The unique potentialities provided by mostly affluent fisheries resources are needed to be tapped and channelized in the appropriate direction for maintaining a paragon of these fisheries resources of coastal area and for pursuing ecologically sustainable development via environment friendly intrinsic exploration and exploitation. “Community Based Fisheries Co-management” program should initiate immediately for the fisherman community of Naaf river estuary of Teknaf coastal region. This will go along way to help sustain the coastal fisheries resources with active participation of the fishermen
Resumo:
Aquaculture is the fastest-growing food production sector globally, with production projected to double within the next 15–20 years. Future growth of aquaculture is essential to providing sustainable supplies of fish in national, regional and global fish food systems; creating jobs; and maintaining fish at affordable levels for resource-poor consumers. To ensure that the anticipated growth of aquaculture remains both economically and ecologically sustainable, we need to better understand the likely patterns of growth, as well as the opportunities and challenges, that these trends present. This knowledge will enable us to better prioritize investments that will help ensure the sustainable development of the sector. In Indonesia, WorldFish and partners have applied a unique methodology to evaluate growth trajectories for aquaculture under various scenarios, as well as the opportunities and challenges these represent. Indonesia is currently the fourth largest aquaculture producer globally, and the sector needs to grow to meet future fish demand. The study overlapped economic and environmental models with quantitative and participatory approaches to understand the future of aquaculture in Indonesia. Such analyses, while not definitive, have provided new understanding of the future supply and demand for seafood in Indonesia stretching to 2030. The learning from this research provides a foundation for future interventions in Indonesian fish food systems, as well as a suite of methodologies that can be applied more widely for insightful analyses of aquaculture growth trajectories in other countries or regions.
Resumo:
Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.
Resumo:
Over the years, degradation of the lakeshore resources has been going on due to human induced activities. Human activities notably house construction, fish smoking, boat construction and cooking at the landings impact the tree and forest cover along the lakeshore and Islands. The survey was conducted in ten districts surrounding Lake Victoria and the landings sampled were selected with the help of the District Fisheries Officers. Data was obtained from selected fishermen and Key informants at these landing sites. The study examined the extent of knowledge on importance, utilization, threats and conservation of trees/forests at the landings. Results showed that the fishers (98%) were aware of the benefits derived from the trees/forests. According to the respondents, the most commonly used tree species for boat construction were Mvule (40%), Mkibu (20%), Musizi (17%) and Mpewere (11 %). This was mainly because these trees were durable. For house construction, Nsambya (25%), Musizi (24%) and other materials (12%) were the most commonly used. For other activities like fish smoking and cooking at the landing, the Fisherfolk used any type of tree species readily available at the landings. As regards the status of the trees at the landings, most of the respondents (72%) J agreed that due to some fishery related activities some tree species had reduced more than others in the vicinity of most landings. Most respondents said that the, most reduced tree species around the landings were Mvule (36%) and Musizi (22%). Among the fishery related activities that had a significant impact on the trees/forests, construction of houses (44%) and boats (22%) emerged uppermost. Other activities such as fish smoking (14%) and cooking (12%) had the least impact on trees/forests. Generally, there was extensive reduction of trees at the landings. Therefore there was need to regulate cutting of trees and to have specific programmes targeting afforestation at and around fish landings.