272 resultados para Eastern Canada

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on air temperature data from three sites of West and East Greenland, on ice charts for the area 54°N, 71°N and 20°W, 70°W, and on CTD profile observations around Greenland, the annual variability of climate is shown. Mean monthly air temperature data from Nuuk/West Greenland reveal the long-term interannual changes of air temperature anomalies. The warming trend which was observed during November, December 1995 was maintained into 1996 for about five months. Thus, spring warming of the near surface water layers, especially on the shallow bank areas off West Greenland has been favoured. As a result of mild air temperatures over most of 1996, sea ice conditions were about normal around Greenland and off eastern Canada. Subsurface observations indicate considerable warming of the 0-200 m water layer off West Greenland. The thermal anomaly of this layer amounts to +1.59K, which is the second highest value on record since the warm 1964 event. The warmer than normal conditions as recorded since November 1995 off East and West Greenland, point at intermediate warming which is characteristic of the second half of the recent decades. The long-term trend of air temperature anomalies off West Greenland points, however, still at cooling, a trend which is persistent since the early 1970s. As the potential driving mechanism for the intermediate warming in the Labrador Sea area, the sea level air pressure gradient between Iceland and the Azores is identified. The 1996 value of this gradient, the North Atlantic Oscillation (NAO) Index, is strongly negative and this represents the flow of mild air masses from the midlatitude Atlantic Ocean to the Greenland/Labrador Sea region. Accordingly, air temperature anomalies indicated unusual warming during the month of February which amounted to >2K in the region of Baffin Land, Labrador and Greenland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissues from Cook Inlet beluga whales, Delphinapterus leucas, that were collected as part of the Alaska Marine Mammal Tissue Archival Project were analyzed for polychlorinated biphenyls (PCB’s), chlorinated pesticides, and heavy metals and other elements. Concentrations of total PCB’s (ΣPCB’s), total DDT (ΣDDT), chlordane compounds, hexachlorobenzene (HCB), dieldrin, mirex, toxaphene, and hexachlorocyclohexane (HCH) measured in Cook Inlet beluga blubber were compared with those reported for belugas from two Arctic Alaska locations (Point Hope and Point Lay), Greenland, Arctic Canada, and the highly contaminated stock from the St. Lawrence estuary in eastern Canada. The Arctic and Cook Inlet belugas had much lower concentrations (ΣPCB’s and ΣDDT were an order of magnitude lower) than those found in animals from the St. Lawrence estuary. The Cook Inlet belugas had the lowest concentrations of all (ΣPCB’s aver-aged 1.49 ± 0.70 and 0.79 ± 0.56 mg/kg wet mass, and ΣDDT averaged 1.35 ± 0.73 and 0.59 ± 0.45 mg/kg in males and females, respectively). Concentrations in the blubber of the Cook Inlet males were significantly lower than those found in the males of the Arctic Alaska belugas (ΣPCB’s and ΣDDT were about half). The lower levels in the Cook Inlet animals might be due to differences in contaminant sources, food web differences, or different age distributions among the animals sampled. Cook Inlet males had higher mean and median concentrations than did females, a result attributable to the transfer of these compounds from mother to calf during pregnancy and during lactation. Liver concentrations of cadmium and mercury were lower in the Cook Inlet belugas (most cadmium values were <1 mg/kg and mercury values were 0.704–11.42 mg/kg wet mass), but copper levels were significantly higher in the Cook Inlet animals (3.97–123.8 mg/kg wet mass) than in Arctic Alaska animals and similar to those reported for belugas from Hudson Bay. Although total mercury levels were the lowest in the Cook Inlet population, methylmercury concentrations were similar among all three groups of the Alaska animals examined (0.34–2.11 mg/kg wet mass). As has been reported for the Point Hope and Point Lay belugas, hepatic concentrations of silver were re

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The natural diet of 506 American lobsters (Homarus americanus) ranging from instar V (4 mm cephalothorax length, CL) to the adult stage (112 mm CL) was determined by stomach content analysis for a site in the Magdalen Islands, Gulf of St. Lawrence, eastern Canada. Cluster and factor analyses determined four size groupings of lobsters based on their diet: <7.5 mm, 7.5 to <22.5 mm, 22.5 to <62.5 mm, and ≥62.5 mm CL. The ontogenetic shift in diet with increasing size of lobsters was especially apparent for the three dominant food items: the contribution of bivalves and animal tissue (flesh) to volume of stomach contents decreased from the smallest lobsters (28% and 39%, respectively) to the largest lobsters (2% and 11%, respectively), whereas the reverse trend was seen for rock crab Cancer irroratus (7% in smallest lobsters to 53% in largest lobsters). Large lobsters also ate larger rock crabs than did small lobsters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This key includes 60 species of sea anemones and their relatives in the orders Actiniaria, Corallimorpharia, Ceriantharia, and Zoanthidea. Species from the intertidal zone, continental slope, and deep sea are included over a geographic range from Atlantic Canada to approximately South Carolina. In addition to the illustrated key itself, characteristics of each species are summarized in tabular form, including morphology, distribution, and types and sizes of cnidae. Ecological and taxonomic information on each species are also included in an annotated species list. (PDF file contains 76 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mexico has an oyster industry of substantial size, ranking about sixth in the world. In 1993, among the top ten oyster producers, Korea, Japan, the United States, China, and France ranked ahead of Mexico, while the Philippines, Australia, Canada, and New Zealand trailed it (Fig. 1). On its east coast, the species landed is the eastern oyster, Crassostrea virginica, while on its west coast C. corteziensis, C. iridescens, and the Pacific oyster, C. gigas, are landed. During the last 10-15 years, annual production often was at least 50,000 t of shelled oysters, or nearly 1.5 million bushels (Anonymous, 1995), with the great preponderance (90%) coming from a series of lagoons connecting with the Gulf of Mexico along the east coast (Fig. 2) and the remainder produced on the west coast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oyster landings in the United States and Canada have been based mainly on three species, the native eastern oyster, Crassostrea virginica, native Olympia oyster, Ostreola conchaphila, and introduced Pacific oyster, C. gigas. Landings reached their peak of around 27 million bushels/year in the late 1800's and early 1900's when eastern oysters were a common food throughout the east coast and Midwest. Thousands of people were involved in harvesting them with tongs and dredges and in shucking, canning, packing, and transporting them. Since about 1906, when the United States passed some pure food laws, production has declined. The causes have been lack of demand, siltation of beds, removal of cultch for oyster larvae while harvesting oysters, pollution of market beds, and oyster diseases. Production currently is about 5.6 million bushels/year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TOPIC 1: In terms of seasonal scale, temperature effect dominates the annual change of steric height in the open ocean whereas salinity effect controls it along the continental shelf. Large portion of the annual change of height relative to the 1000-db surface is contained in the upper 100m layer. However, in interannual scale large anomalies of steric height in the open ocean, are more often than not, caused by halosteric rather than thermosteric effect. At least in the open ocean the heights are almost totally determined by the behavior of deep water. Their interannual variability appears to be related to the cumulative effect of Eckman pumping. TOPIC 2: There is a "trend" that over the past 28 years the water at Station P has warmed. Least-square analysis indicates that this warming may be significant but shortening of the time-series data by approximately 10 years fails to show that this is the case. These "trends" have to be interpreted with care. The warming may be "apparent" in that it is not indicated clearly in the deep isopynal surfaces which, during the above period, have deepened. Thus warming at the isobaric surfaces may be the effect of the downward migration of the isopynal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the early part of the present year I was again detailed from the Biological Survey, U. S. Department of Agriculture to field work in connection with the Smithsonian Biological Survey of the Panama Canal Zone. Additional collections of mammals and birds were made in January and February in the Canal Zone. From the latter part of February to near the end of June work was carried on in eastern Panama to determine the faunal relation of the region to the Canal Zone and the better known areas to the westward and northward. The work was centered in the Pirri range of mountains which rises to a height of over 5,000 feet near the Colombian boundary southeast of San Miguel Bay...(Document contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two subspecies described below were part of the rich collection made by E. A. Goldman in Eastern Panama, during the season of 1912, while engaged in the Smithsonian Biological Survey of Panama. Other new birds from this collection were described in a recent paper...(Document contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking stock and looking to the future - note from former PICES Chairman The state of the western North Pacific in the first half of 1998 The status of the Bering Sea in the first eight month of 1998 The state of the eastern North Pacific since February 1998 Highlights of PICES VII, review of SB activities and future workplan The second PICES Workshop on the Okhotsk Sea and ajacent area PICES-GLOBEC Climate Change and Carrying Capacity Program: A report from PICES VII Data management for the CCCC Program Report on GOOS Living Marine Resource Panel Meeting Photos from PICES VII Vjatcheslav Petrovich Shuntov GLOBEC Canada: Who we are, what we’ve been doing and where we’re headed The Ocean Carrying Capacity Research Program (OCC) at the Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska JAMSTEC research activities in the northern North Pacific People and events

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highlights of PICES VI The state of the eastern North Pacific in the first half of 1997 The state of the western North Pacific in the first half of 1997 The status of the Bering Sea in the first eight month of 1997 Organization of fisheries, environmental and ocean science in Canada Richard James Beamish PICES-GLOBEC Climate Change and Carrying Capacity Program Epipelagic fish production in the open Subarctic Pacific: bottom up or self-regulating control? Activity Report of SCOR Working Group 105 Establishment of Marine Information Research Center: new strategy on oceanographic data management in Japan Bering Sea Ecosystem Biophysical Metadatabase: a collaborative research tool for fisheries-oceanography and ecosystem investigations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Opening Session (pdf 42 KB) Report of Governing Council Meeting (pdf 89 KB) Reports of Science Board and Committees: Science Board (pdf 88 KB) Study Group on North Pacific Ecosystem Status Report and Regional Analysis Center Biological Oceanography Committee (pdf 57 KB) Working Group 14: Effective sampling of micronekton Advisory Panel on Marine Birds and Mammals Fishery Science Committee (pdf 37 KB) Working Group 16: Climate change, shifts to fish production, and fisheries management Marine Environmental Quality Committee (pdf 62 KB) Working Group 15: Ecology of Harmful Algal Blooms (HABs) in the North Pacific Physical Oceanography and Climate Committee (pdf 34 KB) Working Group 13: CO2 in the North Pacific Technical Committee on Data Exchange (pdf 24 KB) Implementation Panel on the CCCC Program (pdf 39 KB) BASS Task Team (pdf 32 KB) Advisory Panel on Iron Fertilization Experiment MODEL Task Team (pdf 22 KB) MONITOR Task Team (pdf 32 KB) Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific REX Task Team (pdf 21 KB) Report of the Finance and Administration Committee (pdf 53 KB) List of Participants (pdf 67 KB) List of Acronyms (pdf 13 KB)