40 resultados para EXTENDED DEPTH

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant cutgrass ( Zizaniopsis miliacea (Michx.) Doell. & Asch.), a tall emergent grass native to the southeastern United States, was studied in Lake Seminole where it formed large expanding stands, and Lake Alice where it was confined to a stable narrow fringe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daytime feeding behavior of humpback whales (Megaptera novaeangliae) in Gulf of the Farallones, California, and adjacent waters was observed during autumn of 1988 to 1990. Bodega Canyon, Cordell Bank, and the Farallon Islands were the primary sites of feeding activity. Fecal samples of whales and zooplankton tows contained euphausiids exclusively, dominated by Thysanoessa spinifera (79%), with lesser amounts of Euphausia pacifica (14%), Nyctiphanes simplex (4%), and Nematoscelis difficilis (3%). In 1988 and 1990, whales also were infrequently observed feeding on small schooling fish, presumably Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and juvenile rockfish (Sebastes spp.). Feeding was the most common behavior observed (52%), and less frequently traveling (23%), milling (21 %), and resting (4%). Whales used different methods to consume euphausiid prey at the surface (0-10 m), in shallow water (11-60 m), and deep water (61-140 m). Humpback whales fed at the surface 56% of time in 1988 and 32% of time in 1990, using primarily lateral lunges to capture swarms of euphausiids. In 1989, no surface feeding was observed; however, deep, long-duration dives were followed by extended surface intervals with many respirations. These 1989 observations coincided with increased prey depth as indicated by depth sounder records of diving whales and prey scattering layers. In 1989, increased prey depth and associated feeding behaviors were strongly associated with unusually high surface temperatures, calm seas, and changes in water circulation. Environmental conditions in 1989 triggered the most intense and wide-spread occurrence of red tide in this region since 1980. Red tide samples collected throughout this period contained Alexandrium (=Gonyaulax) catenella and Noctiluca scintillans. Surface feeding was observed only in 1988 and 1990, when surface prey were available and red tides were very limited in extent, duration, and intensity. Annual variations in humpback whale feeding behavior were related to prey availability which is affected by corresponding environmental conditions. (PDF contains 94 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The California Department of Fish and Game's Natural Stocks Assessment Project (NSAP) collected water quality data at high tides on a monthly basis from February 1991 to October 1994, and during low tides from March 1992 to June 1994 in the Klamath River estuary to describe water quality conditions. NSAP collected data on water temperature, dissolved oxygen, salinity, depth of saltwedge, and Klamath River flow. Klamath River flows ranged from 44.5 cubic meters per second (1570 cfs) in August 1994 to 3832.2 cubic meters per second (135,315 cfs) in March 1993. Saltwater was present in the estuary primarily in the summer and early fall and generally extended 2 to 3 miles upstream. Surface water temperatures ranged from 6-8° C in the winter to 20-24° C in the summer. Summer water temperatures within the saltwedge were generally 5 to 8° C cooler than the surface water temperature. Dissolved oxygen in the estuary was generally greater than 6 to 7 ppm year-round. A sand berm formed at the mouth of the river each year in the late summer or early fall which raised the water level in the estuary and reduced tidal fluctuation so that the Klamath estuary became essentially a lagoon. I hypothesize the formation of the sand berm may increase the production of the estuary and help provide favorable conditions for rearing juvenile chinook salmon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review article detailing the background, development and functionality of the Windermere Profiler, a multi parameter environmental monitoring instrument for use in lakes, reservoirs and rivers. The article explains the requirement for regular data collection by the Freshwater Biological Association at Windermere. The article covers the requirements of a profiling instrument, the design considerations, the electronic circuitry, the computer program, the operation of the computer software, the profiler in use and further developments to the design. A number of figures and images accompany the article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling was concentrated on the North Moor region and the series of ditches which drained this area to the Bristol Channel. Although most ditches were not deep the mud substratum precluded sampling from within the habitat. All samples were taken with a pond net from the banks. Efforts were made to sample each part of the habitat although in some ditches the macrophyte growth was so intense as to make sampling difficult particularly of the sediments. Organisms were identified on the 10 sampling sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fjord estuaries are common along the northeast Pacific coastline, but little information is available on fish assemblage structure and its spatiotemporal variability. Here, we examined changes in diversity metrics, species biomasses, and biomass spectra (the distribution of biomass across body size classes) over three seasons (fall, winter, summer) and at multiple depths (20 to 160 m) in Puget Sound, Washington, a deep and highly urbanized fjord estuary on the U.S. west coast. Our results indicate that this fish assemblage is dominated by cartilaginous species (spotted ratfish [Hydrolagus colliei] and spiny dogfish [Squalus acanthias]) and therefore differs fundamentally from fish assemblages found in shallower estuaries in the northeast Pacific. Diversity was greatest in shallow waters (<40 m), where the assemblage was composed primarily of flatfishes and sculpins, and lowest in deep waters (>80 m) that are more common in Puget Sound and that are dominated by spotted ratf ish and seasonally (fall and summer) by spiny dogfish. Strong depth-dependent variation in the demersal fish assemblage may be a general feature of deep fjord estuaries and indicates pronounced spatial variability in the food web. Future comparisons with less impacted fjords may offer insight into whether cartilaginous species naturally dominate these systems or only do so under conditions related to human-caused ecosystem degradation. Information on species distributions is critical for marine spatial planning and for modeling energy flows in coastal food webs. The data presented here will aid these endeavors and highlight areas for future research in this important yet understudied system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution and demographics of the hogfish (Lachnolaimus maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The length–weight relationships of 22 species of deep-sea fishes inhabiting the continental slopes beyond 250 m depth along the West Coast of India are presented. The parameters a and b of the equation W=a Lb were estimated. The fish samples were collected from trawl surveys during 1999 to 2001 on board the FORV Sagar Sampada at a depth range of 250 to 600 m in the area between 7°N and 20°N latitude. The value of b ranged from 1.94 to 3.36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condition of soft-textured flesh in commercially harvested sablefish, Anoplopoma fimbria, from southeastern Alaska was investigated by National Marine Fisheries Service (NMFS) scientists from the Alaska Fisheries Science Center’s Auke Bay Laboratories (ABL) in Alaska and the Northwest Fisheries Science Center in Seattle, Wash. Sablefish were sampled by longline, pot, and trawl at five sites around Chichagof Island at depths of 259–988 m in the summer of 1985 and at depths of 259–913 m in the winter of 1986. At the time of capture and data collection, sablefish were categorized as being “firm” or “soft” by visual and tactile examination, individually weighed, measured for length, and sexed. Subsamples of the fish were analyzed and linear regressions and analyses of variance were performed on both the summer (n = 242) and winter (n = 439) data for combinations of chemical and physical analyses, depth of capture, weight vs. length, flesh condition, gonad condition, and sex. We successfully identified and selected sablefish with firm- and soft-textured flesh by tactile and visual methods. Abundance of firm fish in catches varied by season: 67% in winter and 40% in summer. Winter catches may give a higher yield than summer catches. Abundance of firm fish catches also varied with depth. Firm fish were routinely found shallower than soft fish. The highest percentage of firm fish were found at depths less than 365 m in summer and at 365–730 m in winter, whereas soft fish were usually more abundant at depths greater than 731 m. Catches of firm fish declined with increasing depth. More than 80% of the fish caught during winter at depths between 365 and 730 m had firm flesh, but this declined to 48% at these depths in summer. Longlines and pots caught similar proportions of firm and soft fish with both gears catching more firm than soft fish. Trawls caught a higher proportion of soft fish compared to longlines and pots in winter. Chemical composition of “firm” and “soft” fish differed. On average “soft” fish had 14% less protein, 12% more lipid, and 3% less ash than firm fish. Cooked yields from sablefish with soft-textured flesh were 31% less than cooked yields from firm fish. Sablefish flesh quality (firmness) related significantly to the biochemistry of white muscle with respect to 11 variables. Summer fish of all flesh conditions averaged 6% heavier than winter fish. Regulating depth of fishing could increase the yield from catches, but the feasibility and benefits from this action will require further evaluation and study. Results of this study provide a basis for reducing the harvest of sablefish with soft flesh and may stimulate further research into the cause and effect relationship of the sablefish soft-flesh phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes.