5 resultados para Dynamic changes

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ENGLISH: Morphometric studies by Godsil (1948), Godsil and Greenhood (1951), Royce (1953) and Schaefer (1952, 1955) have indicated that the yellowfin tuna of the Eastern Pacific are distinct from those of the Central Pacific. Tagging of yellowfin tuna by the California Department of Fish and Game, and by the Inter-American Tropical Tuna Commission in the Eastern Pacific, and by the Pacific Oceanic Fishery Investigations in the Central Pacific, have not yet revealed any migrations between these areas. Shimada and Schaefer (1956) have compared changes in population abundance and fishing intensity, considering the population in the Eastern Pacific as a separate entity. They conclude " ... the amount of fishing has had a real effect upon the stock of Eastern Pacific yellowfin tuna, taken in the aggregate, over the period studied. The evidence suggests also that for this species the intensity of fishing in some recent years has reached and might have even exceeded the level corresponding to the maximum equilibrium yield." Tagging experiments by the California Department of Fish and Game and by the Inter-American Tropical Tuna Commission have yielded returns in the order of one to five percent (Roedel 1954, and unpublished data of both agencies), a level much lower than that at which fishing intensity would be expected to noticeably affect the population size. These results are probably a reflection of the inadequacies of the present tagging methods, but they could lend doubt to the conclusions of Shimada and Schaefer. It is desirable, therefore, to examine other, independent, evidence as to the effects of fishing on the population. At the high levels of fishing intensity suggested by Shimada and Schaefer, in addition to changes in quantity, measurable changes would be expected to have occurred in the quality of the yellowfin tuna stocks, because the average age and size of the fish would have been reduced by the high mortality rates accompanying high fishing intensities. A continuing regular program of sampling catches and determining their length composition, to assess changes in the size composition of the stocks, was initiated by the Commission in 1954 but direct measurements are not available for the earlier, more dynamic period of growth of the fishery. Consequently, other, more general indications of possible changes in the size composition were sought. SPANISH: Los estudios morfométricos efectudos por Godsil (1948), Godsil y Greenhood (1951), Royce (1953) y Schaefer (1952, 1955), han demostrado que el atún aleta amarilla del Pacífico Oriental es distinto del que habita el PacÍfico Central. Los experimentos del Departamento de Pesca y Caza de California y de la Comisión Interamericana del Atún Tropical en el Pacífico Oriental, así como los de las Investigaciones Pesqueras del Océano Pacífico en el Pacífico Central,consistentes en la marcación de atunes aleta amarilla, aún no han puesto de manifiesto movimientos migratorios entre dichas áreas. Shimada y Schaefer (1956) han hecho estudios comparativos sobre la abundancia de la población y la intensidad de la pesca, considerando a la población del Pacífico Oriental como una entidad separada. Su conclusión es que " ... la intensidad de la pesca ha tenido un definido efecto sobre la población del atún aleta amarilla del Pacífico Oriental, tomada en conjunto, a lo largo del período estudiado. La evidencia de que se dispone sugiere así mismo que, por lo que hace a esta especie, la intensidad de la pesca en los últimos años ha alcanzado y quizás aún sobrepasado el nivel correspondiente a la máxima pesca de equilibrio". Los experimentos de mar•cación del Departamento de Pesca y Caza de California y de la Comisión Interamericana del Atún Tropical han producido recuperaciones ,entre el uno y el cinco por ciento (Roedel 1954 y datos inéditos de ambos organismos), lo que constituye un nivel mucho más bajo de aquél en que la intensidad de la pesca podría considerarse que afectaría notablemente el tamaño de la población. Estos resultados reflejan probablemente lo inadecuados que son aún los métodos de marcación, pero ellos podrían, quizá, poner en tela de juicio las conclusiones de Shimada y Schaefer. Por lo tanto,es deseable examinar otras fuentes de evidencia independientes, relacionadas con el efecto que la pesca tiene sobre la población. En efecto, si los altos índices de pesca sugeridos por Shimada y Schaefer son correctos, es de esperar que, además de los cambios en la magnitud de la población, se hayan producido otros, concomitantes y sensibles, en la calidad de los stocks de atún aleta amarilla, puesto que tanto el promedio de edad como el de tamaño de los individuos habrían disminuído debido a las elevadas tasas de mortalidad inherentes a las altas intensidades de pesca. En 1954 la Comisión inició un programa ininterrumpido para tomar muestras y determinar en ellas las frecuencias de tallas y evaluar de este modo los cambios correlativos que tuvieran lugar en los stocks pero, infortunadamente, este sistema de evaluación directa no fué practicado en el período anterior, que fué precisamente el de rápida expansión de la pesquería. En tal virtud, hubo de ser necesario buscar indicios más generales referentes a los cambios posibles en la composición de tamaños. (PDF contains 20 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to providing vital ecological services, coastal areas of North Carolina provide prized areas for habitation, recreation, and commercial fisheries. However, from a management perspective, the coasts of North Carolina are highly variable and complex. In-water constituents such as nutrients, suspended sediments, and chlorophyll a concentration can vary significantly over a broad spectrum of time and space scales. Rapid growth and land-use change continue to exert pressure on coastal lands. Coastal environments are also very vulnerable to short-term (e.g., hurricanes) and long-term (e.g., sea-level rise) natural changes that can result in significant loss of life, economic loss, or changes in coastal ecosystem functioning. Hence, the dynamic nature, effects of human-induced change over time, and vulnerability of coastal areas make it difficult to effectively monitor and manage these important state and national resources using traditional data collection technologies such as discrete monitoring stations and field surveys. In general, these approaches provide only a sparse network of data over limited time and space scales and generally are expensive and labor-intensive. Products derived from spectral images obtained by remote sensing instruments provide a unique vantage point from which to examine the dynamic nature of coastal environments. A primary advantage of remote sensing is that the altitude of observation provides a large-scale synoptic view relative to traditional field measurements. Equally important, the use of remote sensing for a broad range of research and environmental applications is now common due to major advances in data availability, data transfer, and computer technologies. To facilitate the widespread use of remote sensing products in North Carolina, the UNC Coastal Studies Institute (UNC-CSI) is developing the capability to acquire, process, and analyze remotely sensed data from several remote sensing instruments. In particular, UNC-CSI is developing regional remote sensing algorithms to examine the mobilization, transport, transformation, and fate of materials between coupled terrestrial and coastal ocean systems. To illustrate this work, we present the basic principles of remote sensing of coastal waters in the context of deriving information that supports efficient and effective management of coastal resources. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article discusses problems of modelling the seasonal succession of algal species in lakes and reservoirs, and the adaptive selection of certain groups of algae in response to changes in the inputs and relative concentrations of nutrients and other environmental variables. A new generation of quantitative models is being developed which attempts to translate some important biological properties of species (survival, variation, inheritance, reproductive rates and population growth) into predictions about the survival of the fittest, where ”fitness” is measured or estimated in thermodynamic terms. The concept of ”exergy” and its calculation is explored to examine maximal exergy as a measure of fitness in ecosystems, and its use for calculating changes in species composition by means of structural dynamic models. These models accomodate short-term changes in parameters that affect the adaptive responses (species selection) of algae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article the demand for fish and its substitute was estimated using a very flexible demand function, the Almost Ideal Demand System (AIDS) developed by Deaton and Muelllbaeur (1980), incorporating the habit formation variable to measure the impact of the changes in tastes in comsumer demand for fish and meat products from 1960 to 1990 in Malaysia. Information on price and income elasticities for these meat groups was also obtained. To incorporate consumption habit variables, the dynamic translating procedure proposed by Pollak (1970) and Pollak and Wales (1981) has been adopted. The overall results of the maximum likelihood estimates of the dynamic AIDS model are quite good where 19 of 30 coefficients are significantly different from zero and the minimum budget shares, the constant, are between zero and one for each meat type. Consumers tend to purchase and consume fish, chicken, and pork almost daily. Beef and mutton are only consumed occassionally since they are relatively more expensive. This finding is consistent with the trend observed in the per capita consumption and budget share where fish, chicken, and pork tended to dominate over beef and mutton from 1960 to 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological characteristics and population dynamisms of Sphyraena putnamae, were studied in the northern Persian Gulf and Oman Sea restricted to Hormuzgan province waters within 13 months period, from November 2006 up to November 2007. Biometrical and anatomical measurements were carried out, and biological surveys were conducted on 486 specimens. On the other hand, the growth and mortality parameters were estimated by using 3096 samples. These samples were collected from 3 landings, namely Bandar Abbas, Bandar Lengeh and Bandar Jask. The measurements of the minimum and maximum Fork lengths and weights were 11.7 to 8.03 cm and 135.0 to 4140.0 g, respectively. The results indicated that this species, having the Relative Length of Gut, RLG=0.34±0.002, is strongly carnivorous (often fish-eater), proven by the fact that more than 98% of its stomach contents were fish pieces. Examining the changes in the index of stomach emptiness by the percentage of CV = 0.47% indicates that this fish is Moderate feeder. The level of feeding increased in March, before spawning and decreased in June and September, simultaneously with the spawning season. There are 2 peaks of reproduction or spawning seasons during the months of April-May and September, of which the prior is assumed as the main spawning. The sex ratio (M:F) was calculated 0.5:1.0(X2 =2.11), which did not show a significant difference with expected level of 1:1 (P>0.05). The average absolute and relative reproduction rates of Sphyraena putnamae is respectively as follows: 1866827.1±255448.9 and 1097.7±94.3. The highest and the lowest diameter of matured egg are from 200 to 750 μ, and its average diameter is 402.10 ± 0.190 μ. A parameter for Saw-tooth barracuda length measurement, Lm50, based on the Fork-length, was calculated as 54.01 cm. In other words, as far as the fisheries management is concerned, the fish whose lengths are less than 54.01 cm should not be caught. The calculated level of (R2) (correlations of total length & weight), indicated strong correlations between length and weight of this fish, and the obtained formula included W =0.007100 FL 2.9295 and reinforced this assumption. The “K” Index for this fish in 3 above mentioned landings (Jask, Bandar-Abbas and Bandar-Length) were 1.24, 0.37 and 0.46 per year, respectively and the FL index for the same landings were estimated as 129, 110 and 134 cm, respectively. The growth coefficient (MONRO) for the above mentioned regions were calculated as 3.601, 3.647 and 3.917, respectively; and in the surveyed regions there were no significant differences in populations. The Total mortality coefficient (Z) was calculated 0.76, 1.12 and 1.07 per year, the Natural mortality coefficient was 0.46, 0.63 and 0.70, and the Fishing mortality coefficient (rate) (F) was found to be 0.30, 0.49 and 0.37 per year. The value of the exploitation rate (E) is equal to 0.39 per year, indicating that this species is an under-exploited resource, and there is no excessive fishing pressure on the fish supply of this species in the afore-said regions. The highest level of exploitation was found for ‘Bandar Abbas’ fishing region and the lowest level of exploitation is in ‘Bandar Lengeh’ waters.