42 resultados para Duns Scotus, John, approximately 1266-1308
em Aquatic Commons
Resumo:
The Pennekamp Coral Reef State Park was established in 1960 and the Key Largo National Marine Sanctuary in 1975. Field studies, funded by NOAA, were conducted in 1980 - 1981 to determine the state of the coral reefs and surrounding areas in relation to changing environmental conditions and resource management that had occurred over the intervening years. Ten reef sites within the Sanctuary and seven shallow grass and hardbottom sites within the Park were chosen for qualitative and quantitative studies. At each site, three parallel transects not less than 400 m long were run perpendicular to the reef or shore, each 300 m apart. Observations, data collecting and sampling were done by two teams of divers. Approximately 75 percent of the bottom within the 18-m isobath was covered by marine grasses, predominantly turtle grass. The general health of the seagrasses appeared good but a few areas showed signs of stress. The inner hardbottom of the Park was studied at the two entrances to Largo Sound. Though at the time of the study the North Channel hardbottom was subjected to only moderate boat traffic, marked changes had taken place over the past years, the most obvious of which was the loss of the extensive beds of Sargassum weed, one of the most extensive beds of this alga in the Keys. Only at this site was the green alga Enteromorpha encountered. This alga, often considered a pollution indicator, may denote the effects of shore run off. The hardbottom at South Channel and the surrounding grass beds showed signs of stress. This area bears the heaviest boat traffic within the Park waters causing continuous turbidity from boat wakes with resulting siltation. The offshore hardbottom and rubble areas in the Sanctuary appeared to be in good health and showed no visible indications of deterioration. Damage by boat groundings and anchors was negligible in the areas surveyed. The outer reefs in general appear to be healthy. Corals have a surprising resiliency to detrimental factors and, when conditions again become favorable, recover quickly from even severe damage. It is, therefore, a cause for concern that Grecian Rocks, which sits somewhat inshore of the outer reef line, has yet to recover from die-off in 1978. The slow recovery, if occurring, may be due to the lower quality of the inshore waters. The patch reefs, more adapted to inshore waters, do not show obvious stress signs, at least those surveyed in this study. It is apparent that water quality was changing in the keys. Water clarity over much of the reef tract was observed to be much reduced from former years and undoubtedly plays an important part in the stresses seen today over the Sanctuary and Park. (PDF contains 119 pages)
Resumo:
NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html
Resumo:
The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)
Resumo:
An assessment of the status of the Atlantic stock of red drum is conducted using recreational and commercial data from 1986 through 1998. This assessment updates data and analyses from the 1989, 1991, 1992 and 1995 stock assessments on Atlantic coast red drum (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996). Since 1981, coastwide recreational catches ranged between 762,300 pounds in 1980 and 2,623,900 pounds in 1984, while commercial landings ranged between 60,900 pounds in 1997 and 422,500 pounds in 1984. In weight of fish caught, Atlantic red drum constitute predominantly a recreational fishery (ranging between 85 and 95% during the 1990s). Commercially, red drum continue to be harvested as part of mixed species fisheries. Using available length-frequency distributions and age-length keys, recreational and commercial catches are converted to catch in numbers at age. Separable and tuned virtual population analyses are conducted on the catch in numbers at age to obtain estimates of fishing mortality rates and population size (including recruitment to age 1). In tum, these estimates of fishing mortality rates combined with estimates of growth (length and weight), sex ratios, sexual maturity and fecundity are used to estimate yield per recruit, escapement to age 4, and static (or equilibrium) spawning potential ratio (static SPR, based on both female biomass and egg production). Three virtual analysis approaches (separable, spreadsheet, and FADAPT) were applied to catch matrices for two time periods (early: 1986-1991, and late: 1992-1998) and two regions (Northern: North Carolina and north, and Southern: South Carolina through east coast of Florida). Additional catch matrices were developed based on different treatments for the catch-and-release recreationally-caught red drum (B2-type). These approaches included assuming 0% mortality (BASEO) versus 10% mortality for B2 fish. For the 10% mortality on B2 fish, sizes were assumed the same as caught fish (BASEl), or positive difference in size distribution between the early period and the later period (DELTA), or intermediate (PROP). Hence, a total of 8 catch matrices were developed (2 regions, and 4 B2 assumptions for 1986-1998) to which the three VPA approaches were applied. The question of when offshore emigration or reduced availability begins (during or after age 3) continues to be a source of bias that tends to result in overestimates of fishing mortality. Additionally, the continued assumption (Vaughan and Helser, 1990; Vaughan 1992; 1993; 1996) of no fishing mortality on adults (ages 6 and older), causes a bias that results in underestimates of fishing mortality for adult ages (0 versus some positive value). Because of emigration and the effect of the slot limit for the later period, a range in relative exploitations of age 3 to age 2 red drum was considered. Tuning indices were developed from the MRFSS, and state indices for use in the spreadsheet and FADAPT VPAs. The SAFMC Red Drum Assessment Group (Appendix A) favored the FADAPT approach with catch matrix based on DELTA and a selectivity for age 3 relative to age 2 of 0.70 for the northern region and 0.87 for the southern region. In the northern region, estimates of static SPR increased from about 1.3% for the period 1987-1991 to approximately 18% (15% and 20%) for the period 1992-1998. For the southern region, estimates of static SPR increased from about 0.5% for the period 1988-1991 to approximately 15% for the period 1992-1998. Population models used in this assessment (specifically yield per recruit and static spawning potential ratio) are based on equilibrium assumptions: because no direct estimates are available as to the current status of the adult stock, model results imply potential longer term, equilibrium effects. Because current status of the adult stock is unknown, a specific rebuilding schedule cannot be determined. However, the duration of a rebuilding schedule should reflect, in part, a measure of the generation time of the fish species under consideration. For a long-lived, but relatively early spawning, species as red drum, mean generation time would be on the order of 15 to 20 years based on age-specific egg production. Maximum age is 50 to 60 years for the northern region, and about 40 years for the southern region. The ASMFC Red Drum Board's first phase recovery goal of increasing %SPR to at least 10% appears to have been met. (PDF contains 79 pages)
Resumo:
Executive Summary: This study describes the socio-economic characteristics of the U.S. Caribbean trap fishery that encompasses the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. In-person interviews were administered to one hundred randomly selected trap fishermen, constituting nearly 25% of the estimated population. The sample was stratified by geographic area and trap tier. The number of traps owned or fished to qualify for a given tier varied by island. In Puerto Rico, tier I consisted of fishermen who had between 1-40 fish traps, tier II was made up of fishermen who possessed between 41 and 100 fish traps, and tier III consisted of fishermen who held in excess of 100 fish traps. In St. Thomas and St. John, tier I was composed of fishermen who held between 1 and 50 fish traps, tier II consisted of fishermen who had between 51-150 fish traps and tier III was made up of fishermen who had in excess of 150 fish traps. Lastly, in St. Croix, tier I was made up of fishermen who had less than 20 fish traps and tier II consisted of fishermen who had 20 or more fish traps. The survey elicited information on household demographics, annual catch and revenue, trap usage, capital investment on vessels and equipment, fixed and variable costs, behavioral response to a hypothetical trap reduction program and the spatial distribution of traps. The study found that 79% of the sampled population was 40 years or older. The typical Crucian trap fisherman was older than their Puerto Rican and St. Thomian and St. Johnian counterparts. Crucian fishermen’s average age was 57 years whereas Puerto Rican fishermen’s average age was 51 years, and St. Thomian and St. Johnian fishermen’s average age was 48 years. As a group, St. Thomian and St. Johnian fishermen had 25 years of fishing experience, and Puerto Rican and Crucian fishermen had 30, and 29 years, respectively. Overall, 90% of the households had at least one dependent. The average number of dependents across islands was even, ranging between 2.8 in the district of St. Thomas and St. John and 3.4 in the district of St. Croix. The percentage utilization of catch for personal or family use was relatively low. Regionally, percentage use of catch for personal or family uses ranged from 2.5% in St. Croix to 3.8% in the St. Thomas and St. John. About 47% of the respondents had a high school degree. The majority of the respondents were highly dependent on commercial fishing for their household income. In St. Croix, commercial fishing made up 83% of the fishermen’s total household income, whereas in St. Thomas and St. John and Puerto Rico it contributed 74% and 68%, respectively. The contribution of fish traps to commercial fishing income ranged from 51% in the lowest trap tier in St. Thomas and St. John to 99% in the highest trap tier in St. Croix. On an island basis, the contribution of fish traps to fishing income was 75% in St. Croix, 61% in St. Thomas and St. John, and 59% in Puerto Rico. The value of fully rigged vessels ranged from $400 to $250,000. Over half of the fleet was worth $10,000 or less. The St. Thomas and St. John fleet reported the highest mean value, averaging $58,518. The Crucian and Puerto Rican fleets were considerably less valuable, averaging $19,831 and $8,652, respectively. The length of the vessels ranged from 14 to 40 feet. Fifty-nine percent of the sampled vessels were at least 23 feet in length. The average length of the St. Thomas and St. John fleet was 28 feet, whereas the fleets based in St. Croix and Puerto Rico averaged 21 feet. The engine’s propulsion ranged from 8 to 400 horsepower (hp). The mean engine power was 208 hp in St. Thomas and St. John, 108 hp in St. Croix, and 77 hp in Puerto Rico. Mechanical trap haulers and depth recorders were the most commonly used on-board equipment. About 55% of the sampled population reported owning mechanical trap haulers. In St. Thomas and St. John, 100% of the respondents had trap haulers compared to 52% in Puerto Rico and 20% in St. Croix. Forty-seven percent of the fishermen surveyed stated having depth recorders. Depth recorders were most common in the St. Thomas and St. John fleet (80%) and least common in the Puerto Rican fleet (37%). The limited presence of emergency position indication radio beacons (EPIRBS) and radar was the norm among the fish trap fleet. Only 8% of the respondents had EPIRBS and only 1% had radar. Interviewees stated that they fished between 1 and 350 fish traps. Puerto Rican respondents fished on average 39 fish traps, in contrast to St. Thomian and St. Johnian and Crucian respondents, who fished 94 and 27 fish traps, respectively. On average, Puerto Rican respondents fished 11 lobster traps, and St. Thomian and St. Johnian respondents fished 46 lobster traps. None of the Crucian respondents fished lobster traps. The number of fish traps built or purchased ranged between 0 and 175, and the number of lobster traps built or bought ranged between 0 and 200. Puerto Rican fishermen on average built or purchased 30 fish traps and 14 lobster traps, and St. Thomian and St. Johnian fishermen built or bought 30 fish traps and 11 lobster traps. Crucian fishermen built or bought 25 fish traps and no lobster traps. As a group, fish trap average life ranged between 1.3 and 5 years, and lobster traps lasted slightly longer, between 1.5 and 6 years. The study found that the chevron or arrowhead style was the most common trap design. Puerto Rican fishermen owned an average of 20 arrowhead traps. St. Thomian and St. Johnian and Crucian fishermen owned an average of 44 and 15 arrowhead fish traps, respectively. The second most popular trap design was the square trap style. Puerto Rican fishermen had an average of 9 square traps, whereas St. Thomian and St. Johnian fishermen had 33 traps and Crucian fishermen had 2 traps. Antillean Z (or S) -traps, rectangular and star traps were also used. Although Z (or S) -traps are considered the most productive trap design, fishermen prefer the smaller-sized arrowhead and square traps because they are easier and less expensive to build, and larger numbers of them can be safely deployed. The cost of a fish trap, complete with rope and buoys, varied significantly due to the wide range of construction materials utilized. On average, arrowhead traps commanded $94 in Puerto Rico, $251 in St. Thomas and St. John, and $119 in St. Croix. The number of trips per week ranged between 1 and 6. However, 72% of the respondents mentioned that they took two trips per week. On average, Puerto Rican fishermen took 2.1 trips per week, St. Thomian and St. Johnian fishermen took 1.4 trips per week, and Crucian fishermen took 2.5 trips per week. Most fishing trips started at dawn and finished early in the afternoon. Over 82% of the trips lasted 8 hours or less. On average, Puerto Rican fishermen hauled 27 fish traps per trip whereas St. Thomian and St. Johnian fishermen and Crucian fishermen hauled 68 and 26 fish traps per trip, respectively. The number of traps per string and soak time varied considerably across islands. In St. Croix, 84% of the respondents had a single trap per line, whereas in St. Thomas and St. John only 10% of the respondents had a single trap per line. Approximately, 43% of Puerto Rican fishermen used a single trap line. St. Thomian and St. Johnian fishermen soaked their traps for 6.9 days while Puerto Rican and Crucian fishermen soaked their traps for 5.7 and 3.6 days, respectively. The heterogeneity of the industry was also evidenced by the various economic surpluses generated. The survey illustrated that higher gross revenues did not necessarily translate into higher net revenues. Our analysis also showed that, on average, vessels in the trap fishery were able to cover their cash outlays, resulting in positive vessel income (i.e., financial profits). In Puerto Rico, annual financial profits ranged from $4,760 in the lowest trap tier to $32,467 in the highest tier, whereas in St. Thomas and St. John annual financial profits ranged from $3,744 in the lowest tier to $13,652 in the highest tier. In St. Croix, annual financial profits ranged between $9,229 and $15,781. The survey also showed that economic profits varied significantly across tiers. Economic profits measure residual income after deducting the remuneration required to keep the various factors of production in their existing employment. In Puerto Rico, annual economic profits ranged from ($9,339) in the lowest trap tier to $ 8,711 in the highest trap tier. In St. Thomas and St. John, annual economic profits ranged from ($7,920) in the highest tier to ($18,486) in the second highest tier. In St. Croix, annual economic profits ranged between ($7,453) to $10,674. The presence of positive financial profits and negative economic profits suggests that higher economic returns could be earned from a societal perspective by redirecting some of these scarce capital and human resources elsewhere in the economy. Furthermore, the presence of negative economic earnings is evidence that the fishery is overcapitalized and that steps need to be taken to ensure the long-run economic viability of the industry. The presence of positive financial returns provides managers with a window of opportunity to adopt policies that will strengthen the biological and economic performance of the fishery while minimizing any adverse impacts on local fishing communities. Finally, the document concludes by detailing how the costs and earnings information could be used to develop economic models that evaluate management proposals. (PDF contains 147 pages)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
Egeria densa (PLANCH.) ST. JOHN, a submerged plant invader, forms a wide submerged plant zone, particularly along the west coast of the south basin, Lake Biwa. The macrophyte occupies over 82% of the plant zone in the basin and its biomass reaches 93% of the total. The estimated annual net production was approximately 1 kg dry wt./m2 in a dense area, which is about 4.5 times as much as the net production by phytoplankton in an offshore area of the basin. Although the area covered by the macrophyte is only 5.8% of the total of the basin, it produced about one-tenth of the total annual primary production. In the most productive season Egeria produced 46% of the total primary productivity. Thus, the macrophyte never be neglected when one considers the energy flow or material circulation in the basin. This study was initiated in order to clarify the role of submerged macrophytes, particularly E. densa, in Lake Biwa. The following points are reported in this paper: the distribution of macrophytes in the south basin; seasonal change in standing crop of E. densa; seasonal change in values related to production, utilizing a model proposed by Ikushima with its parameters experimentally determined.
Resumo:
Reducing shark bycatch and depredation (i.e., damage caused by sharks to gear, bait, and desired fish species) in pelagic longline fisheries targeting tunas and swordfish is a priority. Electropositive metals (i.e., a mixture of the lanthanide elements lanthanum, cerium, neodymium, and praseodymium) have been shown to deter spiny dogfish (Squalus acanthias, primarily a coastal species) from attacking bait, presumably because of interactions with the electroreceptive system of this shark. We undertook to determine the possible effectiveness of electropositive metals for reducing the interactions of pelagic sharks with longline gear, using sandbar sharks (Carcharhinus plumbeus, family Carcharhinidae) as a model species. The presence of electropositive metal deterred feeding in groups of juvenile sandbar sharks and altered the swimming patterns of individuals in the absence of food motivation (these individuals generally avoided approaching electropositive metal closer than ~100 cm). The former effect was relatively short-lived however; primarily (we assume) because competition with other individuals increased feeding motivation. In field trials with bottom longline gear, electropositive metal placed within ~10 cm of the hooks reduced the catch of sandbar sharks by approximately two thirds, compared to the catch on hooks in the proximity of plastic pieces of similar dimensions. Electropositive metals therefore appear to have the potential to reduce shark interactions in pelagic longline fisheries, although the optimal mass, shape, composition, and distance to baited hooks remain to be determined.
Resumo:
The Pacific Rim population structure of chum salmon (Oncorhynchus keta) was examined with a survey of microsatellite variation to describe the distribution of genetic variation and to evaluate whether chum salmon may have originated from two or more glacial refuges following dispersal to newly available habitat after glacial retreat. Variation at 14 microsatellite loci was surveyed for over 53,000 chum salmon sampled from over 380 localities ranging from Korea through Washington State. An index of genetic differentiation, FST, over all populations and loci was 0.033, with individual locus values ranging from 0.009 to 0.104. The most genetically diverse chum salmon were observed from Asia, particularly Japan, whereas chum salmon from the Skeena River and Queen Charlotte Islands in northern British Columbia and those from Washington State displayed the fewest number of alleles compared with chum salmon in other regions. Differentiation in chum salmon allele frequencies among regions and populations within regions was approximately 18 times greater than that of annual variation within populations. A regional structuring of populations was the general pattern observed, with chum salmon spawning in different tributaries within a major river drainage or spawning in smaller rivers in a geographic area generally more similar to each other than to populations in different major river drainages or geographic areas. Population structure of chum salmon on a Pacific Rim basis supports the concept of a minimum of two refuges, northern and southern, during the last glaciation, but four possible refuges fit better the observed distribution of genetic variation. The distribution of microsatellite variation of chum salmon on a Pacific Rim basis likely reflects the origins of salmon radiating from refuges after the last glaciation period.
Resumo:
The eastern Steller sea lion (Eumetopias jubatus) population comprises animals that breed along the west coast of North America between California and southeastern Alaska. There are currently 13 major rookeries (>50 pups): five in southeastern Alaska, three in British Columbia, two in Oregon, and three in California. Overall abundance has increased at an average annual rate of 3.1% since the 1970s. These increases can largely be attributed to population recovery from predator-control kills and commercial harvests, and abundance is now probably as high as it has been in the last century. The number of rookeries has remained fairly constant (n=11 to 13) over the past 80 years, but there has been a northward shift in distribution of both rookeries and numbers of animals. Based on the number of pups counted in a population-wide survey in 2002, total pup production was estimated to be about 11,000 (82% in southeastern Alaska and British Columbia), representing a total population size as approximately 46,000−58,000 animal
Resumo:
Short-duration (5- or 10-day) deployments of pop-up satellite archival tags were used to estimate survival of white marlin (Tetrapturus albidus) released from the western North Atlantic recreational fishery. Forty-one tags, each recording temperature, pressure, and light level readings approximately every two minutes for 5-day tags (n= 5) or four minutes for 10-day tags (n= 36), were attached to white marlin caught with dead baits rigged on straight-shank (“J”) hooks (n =21) or circle hooks (n=20) in offshore waters of the U.S. Mid-Atlantic region, the Dominican Republic, Mexico, and Venezuela. Forty tags (97.8%) transmitted data to the satellites of the Argos system, and 33 tags (82.5%) transmitted data consistent with survival of tagged animals over the deployment duration. Approximately 61% (range: 19−95%) of all archived data were successfully recovered from each tag. Survival was significantly (P<0.01) higher for white marlin caught on circle hooks (100%) than for those caught on straight-shank (“J”) hooks (65%). Time-to-death ranged from 10 minutes to 64 hours following release for the seven documented mortalities, and five animals died within the first six hours after release. These results indicate that a simple change in hook type can significantly increase the survival of white marlin released from recreational fis
Resumo:
John Otterbein Snyder (1867–1943) was an early student of David Starr Jordan at Stanford University and subsequently rose to become an assistant professor there. During his 34 years with the university he taught a wide variety of courses in various branches of zoology and advised numerous students. He eventually mentored 8 M.A. and 4 Ph.D. students to completion at Stanford. He also assisted in the collection of tens of thousands of fish specimens from the western Pacific, central Pacific, and the West Coast of North America, part of the time while stationed as “Naturalist” aboard the U.S. Fish Commission’s Steamer Albatross (1902–06). Although his early publications dealt mainly with fish groups and descriptions (often as a junior author with Jordan), after 1910 he became more autonomous and eventually rose to become one of the Pacific salmon, Oncorhynchus spp., experts on the West Coast. Throughout his career, he was especially esteemed by colleagues as “a stimulating teacher,” “an excellent biologist,” and “a fine man.
Resumo:
John Nathan Cobb (1868–1930) became the founding Director of the College of Fisheries, University of Washington, Seattle, in 1919 without the benefit of a college education. An inquisitive and ambitious man, he began his career in the newspaper business and was introduced to commercial fisheries when he joined the U.S. Fish Commission (USFC) in 1895 as a clerk, and he was soon promoted to a “Field Agent” in the Division of Statistics, Washington, D.C. During the next 17 years, Cobb surveyed commercial fisheries from Maine to Florida, Hawaii, the Pacific Northwest, and Alaska for the USFC and its successor, the U.S. Bureau of Fisheries. In 1913, he became editor of the prominent west coast trade magazine, Pacific Fisherman, of Seattle, Wash., where he became known as a leading expert on the fisheries of the Pacific Northwest. He soon joined the campaign, led by his employer, to establish the nation’s first fisheries school at the University of Washington. After a brief interlude (1917–1918) with the Alaska Packers Association in San Francisco, Calif., he was chosen as the School’s founding director in 1919. Reflecting his experience and mindset, as well as the University’s apparent initial desire, Cobb established the College of Fisheries primarily as a training ground for those interested in applied aspects of the commercial fishing industry. Cobb attracted sufficient students, was a vigorous spokesman for the College, and had ambitions plans for expansion of the school’s faculty and facilities. He became aware that the College was not held in high esteem by his faculty colleagues or by the University administration because of the school’s failure to emphasize scholastic achievement, and he attempted to correct this deficiency. Cobb became ill with heart problems in 1929 and died on 13 January 1930. The University soon thereafter dissolved the College and dismissed all but one of its faculty. A Department of Fisheries, in the College of Science, was then established in 1930 and was led by William Francis Thompson (1888–1965), who emphasized basic science and fishery biology. The latter format continues to the present in the Department’s successor, The School of Aquatic Fisheries and Science.
Resumo:
ABSTRACT TRANSCRIBED FROM ENGLE'S PH.D. ORAL DEFENSE PAMPHLET: The natural history of juvenile California spiny lobster, Panulirus interruptus (Randall), was investigated, with primary emphasis placed on ascertaining juvenile habitats, determining juvenile growth rates and component growth processes, and evaluating ecological and behavioral phenomena associated with juvenile survival and growth. Habitat surveys of island and mainland localities throughout southern and lower California revealed that small, greenish juveniles typically inhabit crevices or temporary burrows in 0-4m deep, wave-swept rocky habitats covered by dense beds of surf grass, Phyllospadix torreyi S. Watson. Phyllospadix beds were more abundant on gradually sloping rocky mainland beaches than on steeply sloping island shores. Phyllospadix abundance was positively correlated with P. interruptus abundance; however, at Santa Catalina Island, the Phyllospadix habitat was not extensive enough to be the sole lobster nursery. In laboratory tests, puerulus larvae and early juveniles chose Phyllospadix over rubble rocks or broad-bladed kelp, but did not consistently prefer Phyllospadix over reticulate algae. Ecology, growth, and behavior of juvenile P. interruptus inhabiting a discrete Phyllospadix habitat at Bird Rock, Santa Catalina Island, were investigated from October 1974 through December 1976 by means of frequent scuba surveys. Pueruli settled from June to November. Peak recruitment occurred from July to September, when seasonal temperatures were maximal. Settled larvae were approximately one year old. Juvenile growth was determined by size-frequency, single molt increment, mark-recapture, and laboratory culture studies. Carapace length vs. wet weight relationships fit standard power curve equations. Bird Rock juveniles grew from 7 to 32mm CL in 10-11 molts and from 32 to 56mm CL in 5-6 molts during their first and second benthic years, respectively. Growth rates were similar for males and females. Juveniles regenerating more than two limbs grew less per molt than intact lobsters. Long-term growth of laboratory-reared juveniles was 20% less than that of field lobsters. Growth component multiple regression analyses demonstrated that molt increment was directly proportional to premolt size and temperature for age 1+ lobsters. Molt frequency was inversely proportional to size and directly proportional to temperature. Temperature affected age 2+ lobsters similarly, but molt increment was independent of size, and molt frequency declined at a different rate. Juvenile growth rates more than doubled during warm water months compared to cold water months, primarily because of increased molt frequency. Based on results from this study and from previous investigations, it is estimated that P. interruptus males and females become sexually mature by ages 4 and 5 years, respectively, and that legai size is reached by 7 or 8 years of age. Juvenile P. interruptus activity patterns and foraging behavior were similar to those of adults, except that juvenile home ranges were proportionally smaller, and small juveniles were apparently not attracted to distant food. Small mollusks, abundant in Phyllospadix habitats, were the major food items. Size-dependent predation by fish and octopus apparently caused the considerable juvenile mortality observed at Bird Rock. Juveniles approaching 2 years of age gathered in mixed size-class aggregations by day and foraged beyond the grass beds at night. In autumn, these juveniles migrated to deeper habitats, coincident with new puerulus settlement in the Phyllospadix beds. Based on strong inferences from the results, it is proposed that size-dependent predation is the most important factor determining the !ife history strategy of juvenile P. interruptus. Life history tactics promoting rapid growth apparently function dually in reducing the period of high vulnerability to predation and decreasing the time required to reach sexual maturity. The Phyllospadix habitat is an excellent lobster nursery because it provides shelter from predators and possesses abundant food resources for sustaining optimum juvenile growth rates in shallow, warm water.