6 resultados para Drainage, House
em Aquatic Commons
Resumo:
Hydrilla (Hydrilla verticillata (L.f.)Royle), a serious aquatic weed, reproduces through formation of underground tubers. To date, attacking this life-cycle stage has been problematic. The purpose of this study was to measure the impact of exposure to dilute acetic acid on monoecious hydrilla tubers under field conditions. In this field experiment, treatments were acetic acid concentration (0, 2.5, or 5%) and sediment condition (perforated or not perforated). Each of 60, 1x1 m plots (in the Oregon House Canal) were randomly assigned to one treatment. Two weeks after treatment, we collected three samples from each plot. One was washed over 2 mm wire mesh screens to separate tubers from sediment. Relative electrolyte leakage was measured for one tuber from each plot. Five additional tubers from each plot were placed in a growth chamber and sprouting monitored for four weeks. A second sample from each plot was placed in a plastic tub and placed in an outdoor tank, filled with water. These samples were monitored for tuber sprouting. Relative electrolyte leakage increased significantly for tubers exposed to 2.5% or 5% acetic acid. Effects on tubers in perforated sediment were reduced. Exposure to acetic acid inhibited tuber sprouting by 80 to 100%, in both chamber and outdoor tests. These results confirm findings from earlier laboratory/greenhouse experiments, and suggest that this approach may be useful in the management of hydrilla tuber banks in habitats where the water level can be lowered to expose the sediments.
Resumo:
The purpose of this study was to measure and evaluate relationships between populations of benthic macroinvertebrates and fish, as well as variations in water quality in streams affected by acid Mine drainage. (PDF contains 21 pages)
Resumo:
This document is a partial translation of taxonomic notes on two Diptera species (Acalcarella Shilova, Acalcarrella nucus) which were abundant in a survey of Tendipedid species (Diptera, Tendipedidae) of the Amu Darya drainage basin. These taxonomic notes of the larva, pupa and adults include drawings of the Acalcarella nucus larva.
Resumo:
An assessment of three methods of fish capture, to establish the best fishing method which reflects the best range of sizes and species of fish in a given area. The methods used were trawl netting, electrofishing, and seine netting which were assessed on the Crossens drainage system near Southport. The report also includes a study of roach / bream hybrids that were found at the site, which focuses on their distinguishing features and compared with the features of roach and bream.
Resumo:
Few studies of the riverine fish of the Athi-Galana-Sabaki river drainage area in Kenya have been carried out since the last comprehensive surveys of the 1950s and early 1960s. This paper presents updated information on scientific and recommended common names, distribution and ecology of selected fish species of this catchment. At least 28 riverine fish families consisting of 46 genera and 62 species occur in the drainage system, of which, 39 species are strictly freshwater (4 introduced) while 23 species are of marine origin. Five unique behavioural categories of the riverine fish of the drainage system are discussed. The four most speciated riverine fish in the system belong to the families Cyprinidae (14 species), Cichlidae (6 species), and Mormyridae and Gobiidae (4 species each). Thirty fish species occur in areas below the River Tsavo-Athi confluence, 18 fish species above the confluence, while 12 fish species occupy the entire drainage system. One cichlid fish, Oreochromis spilurus spilurus (Gunther, 1894), only occurs in the Tsavo river, while the occurrence in the entire system of one snoutfish species, Mormyprops anguilloides (Linnaeus, 1758) is uncertain. The use of information from this study is recommended when carrying out further studies of fish from the Athi-Galana-Sabaki river drainage.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We estimate monthly runoff for a 2-dimensional solution domain containing those areas tributary to Pyramid Lake, Nevada (the Truckee River drainage basin) at a 1-kilometer grid cell spacing. ... To calculate the effect of snow on the hydrologic system, we perform two experiments. In the first we assume that all precipitation falls as rain; in the second we assume that some precipitation falls as snow, thus available water is a combination of rain and snowmelt. We find that considering the effect of snow results in a more accurate representation of mean monthly flow rates, in particular the peak flow during the melt season in the Sierra Nevada. These preliminary results indicate that a relatively simple snow model can improve the representation of Truckee River basin hydrology, significantly reducing errors in modeled seasonal runoff.