2 resultados para Down syndrome critical region

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pressures placed on the natural, environmental, economic, and cultural sectors from continued growth, population shifts, weather and climate, and environmental quality are increasing exponentially in the southeastern U.S. region. Our growing understanding of the relationship of humans with the marine environment is leading us to explore new ecosystem-based approaches to coastal management, marine resources planning, and coastal adaptation that engages multiple state jurisdictions. The urgency of the situation calls for coordinated regional actions by the states, in conjunction with supporting partners and leveraging a diversity of resources, to address critical issues in sustaining our coastal and ocean ecosystems and enhancing the quality of life of our citizens. The South Atlantic Alliance (www.southatlanticalliance.org) was formally established on October 19, 2009 to “implement science-based policies and solutions that enhance and protect the value of coastal and ocean resources of the southeastern United States which support the region's culture and economy now and for future generations.” The Alliance, which includes North Carolina, South Carolina, Georgia, and Florida, will provide a regional mechanism for collaborating, coordinating, and sharing information in support of resource sustainability; improved regional alignment; cooperative planning and leveraging of resources; integrated research, observations, and mapping; increased awareness of the challenges facing the South Atlantic region; and inclusiveness and integration at all levels. Although I am preparing and presenting this overview of the South Atlantic Alliance and its current status, there are a host of representatives from agencies within the four states, universities, NGOs, and ongoing southeastern regional ocean and coastal programs that are contributing significant time, expertise, and energy to the success of the Alliance; information presented herein and to be presented in my oral presentation was generated by the collaborative efforts of these professionals. I also wish to acknowledge the wisdom and foresight of the Governors of the four states in establishing this exciting regional ocean partnership. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.