3 resultados para Dose-réponse
em Aquatic Commons
Resumo:
Whole-lake techniques are increasingly being used to selectively remove exotic plants, including Eurasian watermilfoil ( Myriophyllum spicatum L.). Fluridone (1-methyl-3-phenyl- 5-[3-(trifluoromethyl)phenyl]-4(1 H )-pyridinone), a systemic whole-lake herbicide, is selective for Eurasian watermilfoil within a narrow low concentration range. Because fluridone applications have the potential for large effects on plant assemblages and lake food webs, they should be evaluated at the whole-lake scale. We examined effects of low-dose (5 to 8 ppb) fluridone applications by comparing submersed plant assemblages, water quality and largemouth bass ( Micropterus salmoides ) growth rates and diets between three reference lakes and three treatment lakes one- and two-years post treatment. In the treatment lakes, fluridone reduced Eurasian watermilfoil cover without reducing native plant cover, although the duration of Eurasian watermilfoil reduction varied among treatment lakes. (PDF has 11 pages.)
Resumo:
This paper describes the optimization of dose of methyltestosteronei (MT) hormone for masculinization of tilapia (Oreochromis niloticus). Five treatments (i.e. T1 T2, T2, T4 and T5) with different doses such as 0, 40, 50, 60 and 65 mg of MT hormone were mixed with per kg of feed for each treatment and fed the fry four times a day up to satiation for a period of 30 days. The stocking density was maintained 10 spawn/liter of water. The growth of fry at different treatments was recorded weekly and mortality was recorded daily. At the end of hormone feeding the fry were reared in hapas fixed in ponds for another 70 days and at the 100th day the fish were sexed by the gonad squashing and aceto-carmine staining method. The analysis of growth data did not show any significant variation in length and weight of fish among the different treatments. High mortality of fry ranging 66% to 81.6% was observed in different treatments and highest mortality was observed during the first twelve days of the experiment. The sex ratio analysis showed that T2 (40 mg/kg) and T5 (65 mg/kg) produced 93.33% of sex reversed male and T3 (50 mg/kg) and T4 (60 mg/kg) produced 96.66% sex reversed male, and these ratios were significantly (p<0.05) different from 1:1 male: female sex ratio. The control, T1 (0 mg/kg) contained 43.33% male progeny. From these results it is suggested that either 50 mg/kg or 60 mg/kg of MT with a feeding period of 30 days could be considered as an optimum dose for masculinization of tilapia (O. niloticus).