18 resultados para Domestic space
em Aquatic Commons
Resumo:
Technological advances in the marine renewable energy industry and increased clarity about the leasing and licensing process are fostering development proposals in both state and federal waters. The ocean is becoming more industrialized and competition among all marine space users is developing (Buck et al. 2004). More spatial competition can lead to conflict between ocean users themselves, and to tensions that spill over to include other stakeholders and the general public (McGrath 2004). Such conflict can wind up in litigation, which is costly and takes agency time and financial resources away from other priorities. As proposals for marine renewable energy developments are evaluated, too often decision-makers lack the tools and information to properly account for the cumulative effects and the tradeoffs associated with alternative human uses of the ocean. This paper highlights the nature of marine space conflicts associated with marine renewable energy literature highlights key issues for the growth of the marine renewable energy sector in the United States. (PDF contains 4 pages)
Resumo:
The paper critically examines the factors militating against domestic fish production in artisanal, aquacultural and industrial sectors in Nigeria. Approaches towards increasing fish production from all these sectors were suggested and discussed in line with the National Economic Empowerment Development Strategy (NEEDS) and Poverty Alleviation programmes of the Federal Government to meet the nation's fish protein requirement within the next three years
Resumo:
A study of the composition and distribution of fish populations in the inshore, surface and bottom water habitats of Kangimi Reservoir showed that the most abundant family was the Cichlidae followed in order of abundance by the familiesCyprinidae, Schilbeidae, Mormyridae, Mochokidae, Characidae, centropomidae and Bagridae. Though the overall composition of families caught inn the three habitats did not vary significantly (P>0.05) only family Cichlidae showed habitat preference: there was a preponderance of Cichlidae in the inshore water habitat (P<0.05). The families Bagridae and Centropomidae were caught only in the inshore and bottom water habitats while the other families were caught from all habitats and showed no habitat preference. The dominance of primary and secondary consumers indicates high fish production potential under adequate management
Resumo:
Obtaining a reliable estimate of the bacterial population is one of the main problems facing the bacterial ecologist. The author discusses the various methods available and concludes that the observed variability in bacterial populations depends on the sampling interval used.
Resumo:
Billfish movements relative to the International Commission for the Conservation of Atlantic Tunas management areas, as well as U.S. domestic data collection areas within the western North Atlantic basin, were investigated with mark-recapture data from 769 blue marlin, Makaira nigricans, 961 white marlin, Tetrapturus albidus, and 1,801 sailfish, Istiophorus platypterus. Linear displacement between release and recapture locations ranged from zero (all species) to 15,744 km (mean 575, median 119, SE 44) for blue marlin, 6,523 km (mean 719, median 216, SE 33) for white marlin, and 3,845 km (mean 294, median 98, SE 13) for sailfish. In total, 2,824 (80.0%) billfish were recaptured in the same management area of release. Days at liberty ranged from zero (all species) to 4,591 (mean 619, median 409, SE 24) for blue marlin, 5,488 (mean 692, median 448, SE 22) for white marlin, and 6,568 (mean 404, median 320, SE 11) for sailfish. The proportions (per species) of visits were highest in the Caribbean area for blue marlin and white marlin, and the Florida East Coast area for sailfish. Blue marlin and sailfish were nearly identical when comparing the percent of individuals vs. the number of areas visited. Overall, white marlin visited more areas than either blue marlin or sailfish. Seasonality was evident for all species, with overall results generally reflecting the efforts of the catch and release recreational fishing sector, particularly in the western North Atlantic. This information may be practical in reducing the uncertainties in billfish stock assessments and may offer valuable insight into management consideration of time-area closure regulations to reduce bycatch mortality of Atlantic billfishes.
Resumo:
Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.