3 resultados para Dissipation

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carfentrazone-ethyl (CE) is a reduced risk herbicide that is currently being evaluated for the control of aquatic weeds. Greenhouse trials were conducted to determine efficacy of CE on water hyacinth ( Eichhornia crassipes (Mart.) Solms- Laub.), water lettuce ( Pistia stratiotes L.), salvinia ( Salvinia minima Baker) and landoltia (Landoltia punctata (G. Mey.) Les & D. J. Crawford ) . CE controlled water lettuce, water hyacinth and salvinia at rates less than the maximum proposed use rate of 224 g ha -1 . Water lettuce was the most susceptible to CE with an EC 90 of 26.9 and 33.0 g ha -1 in two separate trials. Water hyacinth EC 90 values were calculated to be 86.2 to 116.3 g ha -1 , and salvinia had a similar susceptibility to water hyacinth with an EC 90 of 79.1 g ha -1 . Landoltia was not adequately controlled at the rates evaluated. In addition, CE was applied to one-half of a 0.08 ha pond located in North Central, Florida to determine dissipation rates in water and hydrosoil when applied at an equivalent rate of 224 g ha -1 . The half-life of CE plus the primary metabolite, CE-chloropropionic acid, was calculated to be 83.0 h from the whole pond, and no residues were detected in water above the limit of quantification (5 μg L -1 ) 168 h after treatment. CE dissipated rapidly from the water column, did not occur in the sediment above the levels of quantification, and in greenhouse studies effectively controlled three species of aquatic weeds at relatively low rates.(PDF contains 6 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A summary is presented of research conducted on beach erosion associated with extreme storms and sea level rise. These results were developed by the author and graduate students under sponsorship of the University of Delaware Sea Grant Program. Various shoreline response problems of engineering interest are examined. The basis for the approach is a monotonic equilibrium profile of the form h = Ax2 /3 in which h is water depth at a distance x from the shoreline and A is a scale parameter depending primarily on sediment characteristics and secondarily on wave characteristics. This form is shown to be consistent with uniform wave energy dissipation per unit volume. The dependency of A on sediment size is quantified through laboratory and field data. Quasi-static beach response is examined to represent the effect of sea level rise. Cases considered include natural and seawalled profiles. To represent response to storms of realistic durations, a model is proposed in which the offshore transport is proportional to the "excess" energy dissipation per unit volume. The single rate constant in this model was evaluated based on large scale wave tank tests and confirmed with Hurricane Eloise pre- and post-storm surveys. It is shown that most hurricanes only cause 10% to 25% of the erosion potential associated with the peak storm tide and wave conditions. Additional applications include profile response employing a fairly realistic breaking model in which longshore bars are formed and long-term (500 years) Monte Carlo simulation including the contributions due to sea level rise and random storm occurrences. (PDF has 67 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of inlake herbicide trials was to assess on the aquatic environment and resources, of in-lake of weeder 64 (2,4-0 amine) and Rodio (Glyphosate) water hyacinth the effects application to control water hyacinth. The experiments reported here specifically studied the effects of the herbicides on the diversity and abundance of aquatic macrofauna associated with the water weed. Results from this and similar experiments which assessed herbicide efficacy on water hyacinth; dissipation in water, impact on water quality, algal biomass and on diversity and abundance of zooplankton and macrofauna were all to be evaluated as input into the environmental impact assessment exercise required to facilitate decisions on the use of herbicides to control water hyacinth in Uganda.