17 resultados para Discrete Maximum Principles
em Aquatic Commons
Resumo:
This paper presents nine tenets for management as formulated in the literature in recent decades. These tenets, and the principles behind them, form the foundation for systemic management. All tenets are interrelated and far from mutually exclusive or discrete. When we consider them seriously and simultaneously, these tenets expose serious flaws of conventional resource management and define systemic management. Systemic management requires that we manage inclusively and avoid restricting management to any particular interaction between humans and other elements of nature. The management tenets presented here are considered with particular attention to the interrelationships among both the tenets and principles upon which they are based. The case is made that the tenets are inseparable and should be applied collectively. Combined consideration of the tenets clarifies the role of science, contributes to progress in defining management, and leads to the development of ways we can avoid mistakes of past management. Systemic management emerges as at least one form of management that will consistently account for and apply to the complexities of nature.
Resumo:
Menlicirrhus americanus in the northwestern Gulf of Mexico mature at 150-220 mm TL and 12-14 months of age, with males maturing when 10-40 mm smaller than females. Spawning occurs within a broad period from February through November with two discrete peaks which coincide with the periodicity of downcoast alongshore currents (towards Mexico) in spring and fall. This species occurs at depths of less than 5 to 27 m, being most abundant at 5 m or shallower. Young-of-the-year recruit primarily at 5-9 m or shallower and gradually expand their bathymetric range. Age determination by length frequency is feasible in M. americanus but not as simple as in species that spawn in one major period of the year. Only one or two spawned groups normally predominated at anyone time and no more than three co-occurred with few possible exceptions. Observed mean sizes were 138 mm TL at 6 months, and 192 and 272 mm at ages I and II, respectively. Typical maximum size was 296-308 mm and typical maximum age is probably 2-3 years. The largest fISh captured were 392 and 455 mm. Observed sex ratio was 1.2 females to 1 male. Weight, girth, and length-length regressions are presented.(PDF file contains 27 pages.)
Resumo:
Kainji Lake, the first man-made lake in Nigeria is one of the most researched water bodies in Africa. Earlier studies indicated that there was no systematic management of the lake fisheries involving the participation of the fishers in the decision-making processes before 1993. In 1993, the Nigeria-German Kainji Lake Fisheries Promotion Project (KLFPP) started the introduction of a bottom-up approach in the management of the fishery resources through a random selection of some fishers representatives for the decision making body of the project. The paper traces the democratization process of the management approach to the lake fisheries culminating in the systematic selection, appointment, training and assignment of responsibilities to twenty-four Wakilis covering the 316 fishing communities around Lake Kainji
Resumo:
In addition to providing vital ecological services, coastal areas of North Carolina provide prized areas for habitation, recreation, and commercial fisheries. However, from a management perspective, the coasts of North Carolina are highly variable and complex. In-water constituents such as nutrients, suspended sediments, and chlorophyll a concentration can vary significantly over a broad spectrum of time and space scales. Rapid growth and land-use change continue to exert pressure on coastal lands. Coastal environments are also very vulnerable to short-term (e.g., hurricanes) and long-term (e.g., sea-level rise) natural changes that can result in significant loss of life, economic loss, or changes in coastal ecosystem functioning. Hence, the dynamic nature, effects of human-induced change over time, and vulnerability of coastal areas make it difficult to effectively monitor and manage these important state and national resources using traditional data collection technologies such as discrete monitoring stations and field surveys. In general, these approaches provide only a sparse network of data over limited time and space scales and generally are expensive and labor-intensive. Products derived from spectral images obtained by remote sensing instruments provide a unique vantage point from which to examine the dynamic nature of coastal environments. A primary advantage of remote sensing is that the altitude of observation provides a large-scale synoptic view relative to traditional field measurements. Equally important, the use of remote sensing for a broad range of research and environmental applications is now common due to major advances in data availability, data transfer, and computer technologies. To facilitate the widespread use of remote sensing products in North Carolina, the UNC Coastal Studies Institute (UNC-CSI) is developing the capability to acquire, process, and analyze remotely sensed data from several remote sensing instruments. In particular, UNC-CSI is developing regional remote sensing algorithms to examine the mobilization, transport, transformation, and fate of materials between coupled terrestrial and coastal ocean systems. To illustrate this work, we present the basic principles of remote sensing of coastal waters in the context of deriving information that supports efficient and effective management of coastal resources. (PDF contains 4 pages)
Resumo:
Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated.
Resumo:
This paper analyses the relations between effort and catch per unit effort of trawlers which worked in Côte d'Ivoire from Jan 1966 to Dec 1970. A fishing effort permitting to exploit fishery in the best rentability conditions is proposed.
Resumo:
When estimating parameters that constitute a discrete probability distribution {pj}, it is difficult to determine how constraints should be made to guarantee that the estimated parameters { pˆj} constitute a probability distribution (i.e., pˆj>0, Σ pˆj =1). For age distributions estimated from mixtures of length-at-age distributions, the EM (expectationmaximization) algorithm (Hasselblad, 1966; Hoenig and Heisey, 1987; Kimura and Chikuni, 1987), restricted least squares (Clark, 1981), and weak quasisolutions (Troynikov, 2004) have all been used. Each of these methods appears to guarantee that the estimated distribution will be a true probability distribution with all categories greater than or equal to zero and with individual probabilities that sum to one. In addition, all these methods appear to provide a theoretical basis for solutions that will be either maximum-likelihood estimates or at least convergent to a probability distribut
Resumo:
Monthly catch data of bonito Sarda chiliensis from northern Chile, from 1976 to 1989, were used to obtain a series of estimates of the Z-G parameter (i.e., total mortality minus the growth coefficient in weight). This series was then used to estimate a maximum sustainable yield of 4,500 t/year through a modified version of the surplus production model of J. Csirke and J. Caddy. The status of the fishery is discussed.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L∞. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
The Northern Rockfish, Sebastes polyspinis, in Alaska: Commercial Fishery, Distribution, and Biology
Resumo:
The northern rockfish, Sebastes polyspinis, is the second most abundant rockfish in Alaska, and it supports a valuable trawl fishery. Little information is available, however, on either the biology of this species or its commercial fishery. To provide a synopsis of information on northern rockfish in Alaska, this study examined data for this species from commercial fishery observations in 1990–98 and from fishery-independent trawl surveys in 1980–99. Nearly all the commercial catch came from bottom trawling, mostly by large factory-trawlers, although smaller shore-based trawlers in recent years took an increasing portion of the catch in the Gulf of Alaska. Most of the northern rockfish catch in the Gulf of Alaska was taken by a directed fishery, whereas that of the Aleutian Islands predominantly came as discarded bycatch in the Atka mackerel fishery. In both regions, most of the catch was taken from a number of relatively small and discrete fishing grounds at depths of 75–150 m in the Gulf of Alaska and 75–175 m in the Aleutian Islands. These grounds, especially in the Gulf of Alaska, are on shallow rises or banks located on the outer continental shelf, and often are surrounded by deeper water. Five fishing grounds were identified in the Gulf of Alaska, and eleven in the Aleutian Islands. One fishing ground in the Gulf of Alaska, the “Snakehead” south of Kodiak Island, accounted for 46% of the total northern rockfish catch in this region. Analysis of the survey data generally revealed similar patterns of geographic distribution as those seen in the fishery, although some of the commercial fishing grounds did not stand out as areas of special abundance in the surveys. The surveys also found two areas of abundance that were not evident in the fishery data. Relatively few juvenile northern rockfish were caught in any of the surveys, but those taken in the Gulf of Alaska tended to occur more inshore and at shallower depths than adults. Individual size of northern rockfish was substantially larger in the Gulf of Alaska than in the Aleutian Islands according to both fishery and survey data. Analysis of age data from each region supports this, as Gulf of Alaska fish were found to grow significantly faster and reach a larger maximum length than those in the Aleutian Islands. Sex ratio in the Gulf of Alaska was nearly 50:50, but females predominated in the Aleutian Islands by a ratio of 57:43. In both regions, size of females was significantly larger than males.