6 resultados para Directly affects

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to measure and evaluate relationships between populations of benthic macroinvertebrates and fish, as well as variations in water quality in streams affected by acid Mine drainage. (PDF contains 21 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the investigation is to know the percentage of fish meal required to support the best growth of Heterotis niloticus in a semi intensive pond culture system. To achieve this, feed was formulated with equal percentages of blood meal, and corn meal and varying levels of fish meal. The experiment was in four treatments. Results showed that the mean weight gained was directly proportional to the quantity of fish meal made available to the fish fence 31.58g, 33.79g, 45.15g and 51.24g were recorded for treatments I, II, III and IV respectively. Result from this study when compared with previous works, shows that size of the water body to a greater extent affects the growth. The availability of fish meal in the feed made it more acceptable to the fish and hence a commensurate conversion in to flesh. The analysis of variance showed that there is significant difference in the growth performance in the treatments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chesapeake Bay is the largest estuary in the United States. It is a unique and valuable national treasure because of its ecological, recreational, economic and cultural benefits. The problems facing the Bay are well known and extensively documented, and are largely related to human uses of the watershed and resources within the Bay. Over the past several decades as the origins of the Chesapeake’s problems became clear, citizens groups and Federal, State, and local governments have entered into agreements and worked together to restore the Bay’s productivity and ecological health. In May 2010, President Barack Obama signed Executive Order number 13508 that tasked a team of Federal agencies to develop a way forward in the protection and restoration of the Chesapeake watershed. Success of both State and Federal efforts will depend on having relevant, sound information regarding the ecology and function of the system as the basis of management and decision making. In response to the executive order, the National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science (NCCOS) has compiled an overview of its research in Chesapeake Bay watershed. NCCOS has a long history of Chesapeake Bay research, investigating the causes and consequences of changes throughout the watershed’s ecosystems. This document presents a cross section of research results that have advanced the understanding of the structure and function of the Chesapeake and enabled the accurate and timely prediction of events with the potential to impact both human communities and ecosystems. There are three main focus areas: changes in land use patterns in the watershed and the related impacts on contaminant and pathogen distribution and concentrations; nutrient inputs and algal bloom events; and habitat use and life history patterns of species in the watershed. Land use changes in the Chesapeake Bay watershed have dramatically changed how the system functions. A comparison of several subsystems within the Bay drainages has shown that water quality is directly related to land use and how the land use affects ecosystem health of the rivers and streams that enter the Chesapeake Bay. Across the Chesapeake as a whole, the rivers that drain developed areas, such as the Potomac and James rivers, tend to have much more highly contaminated sediments than does the mainstem of the Bay itself. In addition to what might be considered traditional contaminants, such as hydrocarbons, new contaminants are appearing in measurable amounts. At fourteen sites studied in the Bay, thirteen different pharmaceuticals were detected. The impact of pharmaceuticals on organisms and the people who eat them is still unknown. The effects of water borne infections on people and marine life are known, however, and the exposure to certain bacteria is a significant health risk. A model is now available that predicts the likelihood of occurrence of a strain of bacteria known as Vibrio vulnificus throughout Bay waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was carried out with three replicates to determine the effects of feeding Moina micrura enriched with astaxanthin alone (M1) or astaxanthin in combination with either vitamin E (M2), vitamin D (M3) or Cod Liver oil (M4) on the growth, survival and fatty acid composition of giant fresh water prawn Macrobrachium rosenbergii (de Man) larvae. Growth rate was expressed as the time taken to the settlement of 95% post larvae. Maximum growth, the lowest time taken to the 95% PL settlement (38.5±0.50 days), was observed in larvae fed with M3 Moina. The highest survival rate (66.0±1.00%) was observed in those fed with M4 Moina and the second highest survival (61.0±1.00%) and growth rates (40.0±0.00 days) were shown with M2 Moina. The minimum values for both growth (42.5±0.50 days) and survival (33.0±1.50%) were observed in the group fed un-enriched Moina. Results also showed that the survival of prawn larvae increased as the quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased in the dietary Moina. The highest levels of EPA (5.57±0.21%), DHA (3.50±0.21%) and highest total Highly Unsaturated Fatty Acids (HUFA) (13.87±0.68%) were seen in the Moina fed on astaxanthin and Cod Liver Oil (CLO). The results of the study showed that the nutritive quality of Moina, with respect to important fatty acids, can be increased by enrichment and will influence the growth, survival and the fatty acid composition of fresh water prawn larvae fed on them.