7 resultados para Dinoflagellates, calcareous, wall thickness
em Aquatic Commons
Resumo:
The rainfall regime and the karstic nature of the subsoil determines the alternation of a period of flow and a period of drought for a large number of Mediterranean streams. Amongst this type of stream it is possible to distinguish temporary streams, characterised by a period of flow for several months permitting the establishment of the principal groups of aquatic insects; and ephemeral streams whose very brief period of flow permits the establishment of a community reduced to a few species of Diptera. This paper aims to study the structure of the communities which colonise this particular type of stream and the ecology of the principal species which constitute these communities. Four French temporary streams were examined and temperature regimes, dissolved oxygen, calcium and magnesium measured. Samples of fauna were taken regularly and the biotic composition established. The analysis of similarities between the three permanent streams are discussed and compared with permanent streams.
Resumo:
From research carried, out on a section of the Levriere, concretions (granules, nodules, which were sometimes joined together) partly covering the river ”bottom” were observed. The authors propose to make besides a petrographic examination of the calcareous precipitations and to see if their origin is connected to a biological activity, or if it is purely a case of a physical-chemical precipitation. The hydrological background of the Levriere, a small river of the Normandy Vexin, is given and conditions of the formation of the concretions studied.
Resumo:
Collections were made in the summer of 1942 and again at different times in 1946 and 1947. Some collections were not sufficient in numbers to allow for proper identification, so the present paper does not give a complete list. Of the 20 identified species reported on in the paper, two are new to science and ten have not been reported previously for the United States.
Resumo:
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by Polymerase Chain Reaction (PCR). PCR products were analyzed using Single Stranded Conformational Polymorphism (SSCP) and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of 8 coral species studied, and there are at least two clades of Symbiodinium from Kish Island. Clade D was detected from 8 of the coral species while clade C90 was found in 2 of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf.
Resumo:
Sea cucumbers belong to phylum Echinodermata, order Holothuroidea are an abundant and diverse group of Invertebrates, with over 1400 species occuring from the intertidal to the deepest oceanic trenches. Sea cucumbers are important components of the food chain in temperate and coral reef ecosystems and they play an important role as deposite feeders and suspension feeders. Rapid decline in populations may have serious consequences for the survival of other species that are part of the same complex food web,as the eggs, larve and juveniles constitute an important food source for the other marine species including crustaceans, fish and mollusks. In addition sea cucumbers are often called the earthworms of the sea, because they are responsible for the extensive shifting and mixing of the substrate, and recycling of detrital matter. Sea cucumbers consume and grind sediment and organic material into finer particles , turning over the top layers of sediment in lagoons , reefs and other habitats and allowing the penetration of oxygen. While the taxonomy of the holothurian families is generally well known , the distinction of similar species is difficult. There are relatively few holothurian taxonomist.Most sea cucumber species can be identified by Holothurin taxonomists by using the calcareous skeletal ossicles found in the body wall. In this study , at first a sea cucumber from Kish island in Persian gulf has recognized. Individuals collected from west and east extend far away into north and south of coral reefs by diving. I have checked them morphologically and anatomically.Then with key to the orders of the Holothuroidea, They belong to the Aspidochirotida with key to the families of Aspidochirotida, they were in Stichopodidae families and with key to the genus of Stchopodidae, they were Stichopus. Then ossicles were extracted at National Museum of Natural History, by Dr David Pawson. The ossicles were measured on a transect across a slide prepared from the mid-dorsal region of each specimen.The one we have in the shallow waters of Kish island, is Stichopus hermanni, a massive holothurian, body broad, considerably flattened ventraly ,the dorsal side slightly arched and the lateral sides almost vertical; body wall fairy thick and soft ; mouth subterminal; anus central; tentacles usually 20 in number of length and leaf shaped. Numerous ossicles consisting of table with large discs having usually 7 to 15 peripheral holes, but often irregular or incomplete and spire of moderate height ending in a group of spinelets, rosettes of variable development, and c-shaped rods. Color (exept papillae)partly remained after preservation in alcohol which is found at the depth of 4 to 8 meters, on coral reef. Furthermore, the sexual reproductive cycle was described using standard methods. Gonads were removed and transferred to Bouin's fixative for four weeks and then processed according to standard embedding technique. To prevent the loss of tubule contents during embedding, the tubule sections, were cut well beyond the segment selected for sectioning. For each individual, six sections, each section with 5µm diameter by microtome were cut from tubules. These sections were first placed on gelatin coated slides (the gelatin was heated to 42°c) and then transferred to the oven at 37°c for one hour. This technique usually prevents the fragil tubules from breaking and the loss of gametes. The slides were stained with Eosin and Hematoxylin, and good resolution of the various cell types achieved.A second series of slides was stained with the Periodic Acid Schiff(PAS) to identify polysaccharides(glycogen). Monthly sampling was occurred.The sexual reproductive cycle was defined through the combined use of these criteria: Monthly percentages of the gonad stages for each sex, the monthly gonad index (GI) , given as the ratio of the wet gonad weight (G) to the dray weight (DW)and the monthly percentage of individuals that undetermined sex. The gonad consists of two tufts of tubules on which saccules develop. Gonadal development was classified into five stages: post spawning, recovery, growth, advanced growth, and mature stage that were adapted from the earlier studies of holothurians. Histological preparations showed that the sex of larger individuals could be identified by the presence of oogonia and young oocytes in females, and spermatogonic stages in males.The mean diameter of the tubules and gonadal mass follow annual cycles, increasing from late winter through spring, and dropping abruptly after spawning in the summer. Gametogenesis is generally a prolongate process and begins in March. By summer the ovarian tubules contain oocytes with diameter of 120-240 pm and the testicular tubules contain an abundance of spermatozoa (diameter 5-6 gm ).Following spawning the predominant activity within the spent tubules is phagocytosis of the residual gamets.The active phase of gametogenesis (March to July), coincides with an increasing photoperiod regim, and an accelerated gametogenesis occurs in July when temperature is high. Throughout the year, the gonad of Stichopus hermanni is larger in males than in females, and this is due to the number of tubules in the testis rather than to tubules length or diameter.