4 resultados para Detection sensitivity
em Aquatic Commons
Resumo:
A competitive enzyme-linked immunosorbent assay (cELISA) was developed by using a whole-cell antigen from a marine Brucella sp. isolated from a harbor seal (Phoca vitulina). The assay was designed to screen sera from multiple marine mammal species for the presence of antibodies against marine-origin Brucella. Based on comparisons with culture-confirmed cases, specificity and sensitivity for cetacean samples tested were 73% and 100%, respectively. For pinniped samples, specificity and sensitivity values were 77% and 67%, respectively. Hawaiian monk seal (Monachus schauinslandi; n = 28) and bottlenose dolphin (Tursiops truncatus; n = 48) serum samples were tested, and the results were compared with several other assays designed to detect Brucella abortus antibodies. The comparison testing revealed the marine-origin cELISA to be more sensitive than the B. abortus tests by the detection of additional positive serum samples. The newly developed cELISA is an effective serologic method for detection of the presence of antibodies against marine-origin Brucella sp. in marine mammals.
Resumo:
We assess the application of the second-generation Environmental Sample Processor (ESP) for the detection of harmful algal bloom (HAB) species in field and laboratory settings using two molecular probe techniques: a sandwich hybridization assay (SHA) and fluorescent in situ hybridization (FISH). During spring 2006, the first time this new instrument was deployed, the ESP successfully automated application of DNA probe arrays for various HAB species and other planktonic taxa, but non-specific background binding on the SHA probe array support made results interpretation problematic. Following 2006, the DNA array support membrane that we were using was replaced with a different membrane, and the SHA chemistry was adjusted. The sensitivity and dynamic range of these modifications were assessed using 96-well plate and ESP array SHA formats for several HAB species found commonly in Monterey Bay over a range of concentrations; responses were significantly correlated (p < 0.01). Modified arrays were deployed in 2007. Compared to 2006, probe arrays showed improved signal:noise, and remote detection of various HAB species was demonstrated. We confirmed that the ESP and affiliated assays can detect HAB populations at levels below those posing human health concerns, and results can be related to prevailing environmental conditions in near real-time.
Resumo:
Five isolates of Aeromonas sobria, collected from the diseased fish were selected for detection the pathogenicity following water-born infection method on silver barbs (Barbodes gonionotus) at the selected exposure dose 2.5x10⁸ CFU/ml which was standardized by preliminary test. In the experimental condition lesion and mortality were found in fishes. Among the isolate, Ass17 Ass19, Ass31 and Ass36 were successfully infected 20-60% fishes. Another isolate Ass20 was found non-pathogenic. Drug sensitivity test was performed by six antibiotics viz. Oxytetracycline, Oxolinic acid, Chloramphenicol, Stilphamethozazole, Streptomycin, Erythromycin. All the isolates showed variable reaction patterns to antibiotics. Most of the isolates were found sensitive to Oxytetracycline (OT), Oxolinic acid (OA) and Chloramphenicol (C) but resistance to Erythromycin and Sulphamethoxazole (SXT). Isolate Ass31 found resistant to Oxolinic acid.
Resumo:
Latex beads were sensitized with monoclonal antibodies (MAb) rose against VP28 of WSSV. The optimum concentration of MAb required to sensitize the latex beads was 125 µg/ml. The sensitized latex beads were used to detect WSSV from PCR-positive stomach tissue homogenates obtained from infected shrimp. Stomach tissue homogenates from WSSV-infected shrimp agglutinated the sensitized latex beads within 10 minutes, while uninfected samples did not produce any agglutination, although non-specific agglutinations were observed in some samples. The analytical sensitivity, analytical specificity, diagnostic sensitivity and diagnostic specificity of the (LAT) agglutination test were assessed. The analytical sensitivity of the test was 40 ng of purified WSSV (2 µg/ml). The sensitized latex beads did not agglutinate with normal shrimp tissue or MBV-infected tissue homogenate. The test has a diagnostic sensitivity of 70 and 45%, respectively, compared to single-step and nested PCR. The diagnostic specificity of the test was 82%. This test is a simple and rapid on-farm test which can be used to corroborate clinical signs for the detection of WSSV in grow-out ponds.