32 resultados para Degraded steppe
em Aquatic Commons
Resumo:
Secondary metabolites are produced by aquatic plants, and in some instances, exudation of these metabolites into the surrounding water has been detected. To determine whether infestations of Eurasian watermilfoil or hydrilla produce such exudates, plant tissues and water samples were collected from laboratory cultures and pond populations and were analyzed using solid phase extraction, HPLC, and various methods of mass spectrometry including electrospray ionization, GC/MS, electron impact and chemical ionization. Previously reported compounds such as tellimagrandin II (from Eurasian watermilfoil) and a caffeic acid ester (from hvdrilla), along with a newly discovered flavonoid, cyanidin 3 dimalonyl glucoside (from hydrilla), were readily detected in plant tissues used in this research but were not detected in any of the water samples. If compounds are being released, as suggested by researchers using axenic cultures, we hypothesize that they may be rapidly degraded by bacteria and therefore undetectable.
Resumo:
Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)
Resumo:
Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.
Resumo:
Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997). Pollutants accumulate on impervious surfaces, and the increased runoff with urbanization is a leading cause of nonpoint source pollution (USEPA 2002). Sediment, chemicals, bacteria, viruses, and other pollutants are carried into receiving water bodies, resulting in degraded water quality (Holland et al. 2004, Sanger et al. 2008). (PDF contains 5 pages)
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
Generally, wetlands are thought to perform water purification functions, removing contaminants as water flows through sediment and vegetation. This paradigm was challenged when Grant et al. (2001) reported that Talbert Salt Marsh (Figure 1.) increased fecal indicator bacteria (FIB) output to coastal waters, contributing to poor coastal water quality. Like most southern California wetlands, Talbert Salt Marsh has been severely degraded. It is a small (10 ha), restored wetland, only 1/100th its original size, and located at the base of a highly urbanized watershed. Is it reasonable to expect that this or any severely altered wetland will perform the same water purification benefits as a natural wetland? To determine how a more pristine southern California coastal wetland attenuated bacterial contaminants, we investigated FIB concentrations entering and exiting Carpinteria Salt Marsh (Figure 2.), a 93 ha, moderate-sized, relatively natural wetland.(PDF contains 4 pages)
Resumo:
DNA in canned tuna is degraded into short fragments of a rew hundred base pairs. The polymerase chain reaction (PCR) was used to amplify short sequences of mitochondrial DNA, which were denatured and analysed by polyacrylamide gel electrophoresis (native PAGE) for detection of single strand conformation polymorphisms. Species specific patterns of DNA bands were obtained for a number of tuna and bonito species. DE: In Thunfischkonserven liegt die DNA in Form kurzkettiger Fragmente von wenigen Hundert Basenpaaren Länge vor. Mit Hilfe der Polymerase-Kettenreaktion (PCR) wurden kurze Sequenzen der mitochondrialen DNA vervielfältigt. Anschließend wurde die gebildete DNA in Einzelsträngen überführt, die durch eine native Polyacrylamidgel-Elektrophorese (PAGE) aufgetrennt wurde. Für eine Reihe von Thunfischen und Boniten ergaben die Einzelstränge artspezifische Bandenmuster, die auf unterschiedliche Konformationen der DNA-Stränge der einzelnen Fischarten zurückzuführen sind.
Resumo:
An extreme dry-down and muck-removal project was conducted at Lake Tohopekaliga, Florida, in 2003-2004, to remove dense vegetation from inshore areas and improve habitat degraded by stabilized water levels. Vegetation was monitored from June 2002 to December 2003, to describe the pre-existing communities in terms of composition and distribution along the environmental gradients. Three study areas (Treatment-Selection Sites) were designed to test the efficacy of different treatments in enhancing inshore habitat, and five other study areas (Whole-Lake Monitoring Sites) were designed to monitor the responses of the emergent littoral vegetation as a whole. Five general community types were identified within the study areas by recording aboveground biomasses and stem densities of each species. These communities were distributed along water and soils gradients, with water depth and bulk density explaining most of the variation. The shallowest depths were dominated by a combination of Eleocharis spp., Luziola fluitans, and Panicum repens; while the deeper areas had communities of Nymphaea odorata and Nuphar luteum; Typha spp.; or Paspalidium geminatum and Hydrilla verticillata. Mineralized soils were common in both the shallow and deep-water communities, while the intermediate depths had high percentages of organic material in the soil. These intermediate depths (occurring just above and just below low pool stage) were dominated by Pontederia cordata, the main species targeted by the habitat enhancement project. This emergent community occurred in nearly monocultural bands around the lake (from roughly 60–120 cm in depth at high pool stage) often having more diverse floating mats along the deep-water edge. The organic barrier these mats create is believed to impede access of sport fish to shallow-water spawning areas, while the overall low diversity of the community is evidence of its competitive nature in stabilized waters. With continued monitoring of these study areas long-term effects of the restoration project can be assessed and predictive models may be created to determine the efficacy and legitimacy of such projects in the future.
Resumo:
The purpose of this work was the study of phytoplankton production of the salt lakes of the Steppe region of Crimea, during the vegetative period of 1974. From May to October Sakskoe and Sasyk Lakes were examined, and from August to October - Moinakskoe Lake. The density of the salt water was measured and the intensity of photosynthesis was determined. From the data presented, it is apparent that the intensity of photosynthesis in Sakskoe and Sasyk Lakes, on average, is extremely high.
Resumo:
Fishing communities around the Indian Ocean were severely affected by the December 2004 tsunamis. Programs for rebuilding coastal fisheries livelihoods need to address the pre-tsunami situation that was characterized by overfishing and degraded natural resources. Adopting appropriate strategies to ensure sustainable livelihoods will require community involvement, as well as cross-sectoral, integrated planning and management at ascending government levels. Key recommendations from the WorldFish Center study Sustainable Management of Coastal Fish Stocks in Asia are presented to encourage discussion and debate.