32 resultados para DeepLearning NeuralNetwork StackedDenoisingAuto-encoder ArtificialIntelligence IntelligenzaArtificiale RetiNeurali TimeSeries SerieStoriche SerieTemporali Forecasting Previsione Auto-encoder

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major Outcomes from the 2008 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) PICES Science – 2008 (pdf, 0.1 Mb) 2008 PICES Awards (pdf, 0.3 Mb) Charles B. Miller – A Selective Biography (pdf, 0.4 Mb) Latest and Upcoming PICES Publications (pdf, 0.1 Mb) 2008 OECOS Workshop in Dalian (pdf, 0.2 Mb) PICES Calendar (pdf, 0.1 Mb) 2008 PICES Workshop on “Climate Scenarios for Ecosystem Modeling (II)” (pdf, 0.1 Mb) PICES/ESSAS Workshop on “Marine Ecosystem Model Inter-Comparisons” (pdf, 0.2 Mb) Highlights of the PICES Seventeenth Annual Meeting (pdf, 0.5 Mb) 2008 PICES Summer School on “Ecosystem-Based Management” (pdf, 0.3 Mb) 4th PICES Workshop on “The Okhotsk Sea and Adjacent Areas” (pdf, 0.2 Mb) PICES WG 21 Rapid Assessment Surveys (pdf, 0.4 Mb) PICES Interns (pdf, 0.3 Mb) PICES @ Oceans in a High CO2 World (pdf, 0.1 Mb) Coping with Global Change in Marine Social–Ecological Systems: An International Symposium (pdf, 0.1 Mb) The State of the Western North Pacific in the First Half of 2008 (pdf, 1.3 Mb) State of the Northeast Pacific through 2008 (pdf, 0.3 Mb) The Bering Sea: Current Status and Recent Events (pdf, 0.2 Mb) An Opinion Born of Years of Observing Timeseries Observations (pdf, 0.1 Mb) New Chairman for the PICES Fishery Science Committee (pdf, 0.1 Mb)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nursery site for the Alaska skate (Bathyraja parmifera) was sampled seasonally from June 2004 to July 2005. At the small nursery site (~2 km2), located in a highly productive area near the shelf-slope interface at the head of Bering Canyon in the eastern Bering Sea, reproductive males and females dominated the catch and neonate and juvenile skates were rare. Seasonal samples showed summertime (June and July) as the peak reproductive time in the nursery although some reproduction occurred throughout the year. Timeseries analysis of embryo length frequencies revealed that three cohorts were developing simultaneously and the period of embryonic development was estimated at 3.5 years and average embryo growth rate at 0.2 mm/day. Estimated egg case deposition occurred mainly during summertime and hatching occurred during winter months. Protracted hatching times may be common for oviparous elasmobranch species and may be directly correlated with ambient temperatures as evident from a meta-data analysis. Evidence indicates that the Alaska skate uses the eastern Bering Sea outer continental shelf region for reproduction and the middle and inner shelf regions as habitat for immature and subadults. Skate nurseries may be vulnerable to disturbances because they are located in highly productive areas and because embryos develop slowly.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Cover [pdf, 0.2 Mb] The state of PICES Science - 2001 [pp. 1-2] [pdf, 0.2 Mb] Reception remarks at PICES X [pp. 3-4] [pdf, 0.3 Mb] The state of the western North Pacific in the first half of 2001 [pp. 5-7] [pdf, 0.8 Mb] The status of the Bering Sea: January - August 2001 [pp. 8-9] [pdf, 0.4 Mb] The state of the eastern Norht Pacific since spring 2001[pp. 10-11] [pdf, 0.3 Mb] 2001 SEEDS experiment in the western Norht Pacific [pp. 12-13] [pdf, 0.5 Mb] Plans for the Canadian SOLAS Iron Enrichment Experiment [pp. 14-15] [pdf,. 0.4 Mb] Photo highlights of the PICES Tenth Annual Meeting [pp. 16-17] [pdf,. 0.3 Mb] NEAR-GOOS 2001 Ocean Environment Forecasting Workshop [pp. 18-19] [pdf, 0.6 Mb] IRI/IPRC Pacific Climate-Fisheries Workshop [pp. 20-21] [pdf, 0.2 Mb] PICES North Pacific Ecosystem Status Report [p. 21] [pdf,. 0.2 Mb] U.S. GLOBEC Northeast Pacific Ocean Program [pp. 22-26] [pdf, 0.5 Mb] New PICES Committee and Program Chairmen biographies [pp. 27-29] [pdf,. 0.4 Mb] Upcoming PICES publications and meetings [p. 30] [pdf,. 0.2 Mb] North Pacific Transitional Areas Symposium [p. 31] [pdf, 0.5 Mb] Gijon Symposium and other PICES announcements [p. 32] [pdf, 0.4 Mb]

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Major Outcomes from the 2009 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) The FUTURE is Here (pdf, 0.1 Mb) PICES Harmful Algal Bloom International Seafood Safety Project (pdf, 0.3 Mb) PICES at the 2009 GLOBEC Open Science Meeting (pdf, 0.4 Mb) Modeling Ecosystems and Ocean Processes Workshop (pdf, 0.1 Mb) Krill Biology and Ecology Workshop (pdf, 0.1 Mb) Polar and Sub-Polar Marine Ecosystems Workshop (pdf, 0.4 Mb) Biogeochemistry of the Oceans in a Changing Climate Workshop (pdf, 0.1 Mb) Continuous Plankton Recorder Surveys of the Global Oceans (pdf, 0.4 Mb) Plankton Phenology Workshop (pdf, 0.2 Mb) Workshop on “Climate Impact on Ecosystem Dynamics of Marginal Seas” (pdf, 0.1 Mb) Erratum (pdf, 0.4 Mb) The State of the Western North Pacific in the Second Half of 2008 (pdf, 0.2 Mb) State of the Northeast Pacific into early 2009 (pdf, 0.1 Mb) Current Status of the Bering Sea Ecosystem (pdf, 0.1 Mb) 2009 Salmon Forecasting Forum (pdf, 0.3 Mb) The Third Argo Science Workshop: “The Future of Argo” (pdf, 0.1 Mb) 2009 ESSAS Annual Science Meeting (pdf, 0.1 Mb) A Visit Fit for an Emperor and Empress of Japan (pdf, 0.9 Mb)

Relevância:

0.00% 0.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]

Relevância:

0.00% 0.00%

Publicador:

Resumo:

The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)

Relevância:

0.00% 0.00%

Publicador:

Resumo:

The health of the oceans and people are inextricably linked. For many years we focused research and policy on anthropogenic impacts to oceans and coasts. Recently we have started to think about how the health of the oceans affects us. In response to the Oceans and Human Health Act of 2004, a NOAA initiative was created to explore the “One Health” of the oceans and coasts. The Center of Excellence in Oceans and Human Health at Hollings Marine Laboratory (HML) is one of three Centers dedicated to understanding the connections and forecasting changes in ocean and coastal health and human health. The Center at HML is developing new tools and approaches, including sentinel habitats and sentinel species, to evaluate linkages between ecological process and human health and wellbeing. The results provide environmental and public health managers, policy-makers and communities forecasts and assessments to improve ecosystem-based management that protects health and mitigates risks for the oceans, coasts and people.(PDF contains 4 pages)

Relevância:

0.00% 0.00%

Publicador:

Resumo:

How to regulate phytoplankton growth in water supply reservoirs has continued to occupy managers and strategists for some fifty years or so, now, and mathematical models have always featured in their design and operational constraints. In recent years, rather more sophisticated simulation models have begun to be available and these, ideally, purport to provide the manager with improved forecasting of plankton blooms, the likely species and the sort of decision support that might permit management choices to be selected with increased confidence. This account describes the adaptation and application of one such model, PROTECH (Phytoplankton RespOnses To Environmental CHange) to the problems of plankton growth in reservoirs. This article supposes no background knowledge of the main algal types; neither does it attempt to catalogue the problems that their abundance may cause in lakes and reservoirs.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

RIVPACS has been used successfully for biological assessment of river water quality but its potential in forecasting the effects of environmental change has not been investigated. This study has shown that it is possible to simulate faunal changes in response to environmental disturbance, provided that the disturbance directly involves the environmental variables used in RIVPACS predictions. These variables relate to channel shape, discharge and substratum. Many impacts, particularly those associated with pollution, will not affect these variables and therefore RIVPACS cannot simulate the effects of pollution. RIVPACS was sensitive only to major changes in substratum. It was concluded that, because of the static nature of RIVPACS, it cannot respond to the dynamic effects and processes associated with environmental disturbance. Thus RIVPACS, while showing direction of change and indicating sensitive taxa, cannot be used to predict or forecast the effects of environmental impacts.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Outfall at sea of sewage from Abidjan requires information about the die-off of bacteria in the sea. The method of determination is described and validity of data is analysed. These preliminary results point out some features about the choice of methodology.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.

Relevância:

0.00% 0.00%

Publicador:

Resumo:

During the VITAL cruise in the Bay of Biscay in summer 2002, two devices for measuring the length of swimming fish were tested: 1) a mechanical crown that emitted a pair of parallel laser beams and that was mounted on the main camera and 2) an underwater auto-focus video camera. The precision and accuracy of these devices were compared and the various sources of measurement errors were estimated by repeatedly measuring fixed and mobile objects and live fish. It was found that fish mobility is the main source of error for these devices because they require that the objects to be measured are perpendicular to the field of vision. The best performance was obtained with the laser method where a video-replay of laser spots (projected on fish bodies) carrying real-time size information was used. The auto-focus system performed poorly because of a delay in obtaining focus and because of some technical problems.