55 resultados para Deep pool
em Aquatic Commons
Resumo:
Upward leakage of saline water from an artesian aquifer below 1,500 feet has caused an increase in chloride concentration in the lower Hawthorn aquifer from less than 1,000 mg/1 (milligrams per liter) to values ranging from about 1,300 to 15,000 mg/1. Similarly the higher temperatures of the intruding water has caused an increase in water temperatures in the aquifer from 82"F to values ranging from 83 to 93"F. The intruding water moves upward either through the open bore hole of deep wells or test holes, or along a fault or fracture system, which has been identified in the area. From these points of entry into the lower Hawthorn aquifer, the saline water spreads laterally toward the south and southeast, but is generally confined to components of the fault system. The saline water moves upward from the lower Hawthorn aquifer into the upper Hawthorn aquifer through the open bore hole of wells, which connect the aquifers. This movement has resulted in an increase in chloride from less than 200 mg/1 in the unaffected parts of the upper Hawthorn aquifer to values commonly ranging from about 300 to more than 3,000 mg/1 in parts of the aquifer affected by upward leakage. The upper Hawthorn aquifer is the principal source of ground-water supply for public water-supply systems in western Lee County. Similar effects have been noted in the water-table aquifer, where chloride increased from less than 100 to concentrations ranging from about 500 to more than 5,000 mg/1. This was caused by the downward infiltration of water discharged at land surface from wells tapping the lower Hawthorn aquifer. The spread of saline water throughout most of the McGregor Isles area is continuing as of 1971. (40 page document)
Resumo:
Research cruises were conducted in August-October 2007 to complete the third annual remotely operated vehicle (ROV)-based assessments of nearshore rocky bottom finfish at ten sites in the northern Channel Islands. Annual surveys at the Channel Islands have been conducted since 2004 at four sites and were expanded to ten sites in 2005 to monitor potential marine protected area (MPA)effects on baseline fish density. Six of the ten sites are in MPAs and four in nearby fished reference areas. In 2007 the amount of soft-only substrate on the 141 track lines surveyed was again estimated in real-time in order to target rocky bottom habitat. These real-time estimates of hard and mixed substrate for all ten sites averaged 57%, 1% more than the post-processed average of 56%. Surveys generated 69.9 km of usable video for use in finfish density calculations, with target rocky bottom habitat accounting for 56% (39.1 km) for all sites combined. The amount of rocky habitat sampled by site averaged 3.8 km and ranged from 3.3 km sampled at South Point, a State Marine Reserve (SMR) off Santa Rosa Island, to 4.7 km at Anacapa Island SMR. A sampling goal of 75 transects at all 10 sites was met using real-time habitat estimates combined with precautionary over-sampling by 10%. A total of seventy kilometers of sampling is projected to produce at least seventy-five 100 m2 transects per site. Thirteen of 26 finfish taxa observed were selected for quantitative evaluation over the time series based on a minimum criterion of abundance (0.05/100 m2). Ten of these 13 finfish appear to be more abundant at the state marine reserves relative to fished areas when densities were averaged across the 2005 to 2007 period. One of the species that appears to be more abundant in fished areas was señorita, a relatively small prey species that is not a commercial or recreational target. (PDF contains 83 pages.)
Resumo:
From May 22 to June 4, 2006, NOAA scientists led a research cruise using the ROPOS Remotely Operated Vehicle (ROV) to conduct a series of dives at targeted sites in the Olympic Coast National Marine Sanctuary (OCNMS) with the goal of documenting deep coral and sponge communities. Dive sites were selected from areas for which OCNMS had side scan sonar data indicating the presence of hard or complex substrate. The team completed 11 dives in sanctuary waters ranging from six to 52 hours in length, at depths ranging from 100 to 650 meters. Transect surveys were completed at 15 pre-selected sites, with additional observations made at five other sites. The survey locations included sites both inside and outside the Essential Fish Habitat (EFH) Conservation Area, known as Olympic 2, established by the Pacific Fishery Management Council, enacted on June 12, 2006. Bottom trawling is prohibited in the Olympic 2 Conservation Area for nontribal fishermen. The Conservation Area covers 159.4 square nautical miles or about 15 percent of the sanctuary. Several species of corals and sponges were documented at 14 of the 15 sites surveyed, at sites both inside and outside the Conservation Area, including numerous gorgonians and the stony corals Lophelia pertusa and Desmophyllum dianthus, as well as small patches of the reef building sponge Farrea occa. The team also documented Lophelia sp. and Desmophyllum sp. coral rubble, dead gorgonians, lost fishing gear, and other anthropogenic debris, supporting concerns over potential risks of environmental disturbances to coral health. (PDF contains 60 pages.)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
In 2003, twelve marine protected areas were established in state waters (0-3 nmi) surrounding the Channel Islands. NOAA is considering extending this network (3-6 nmi) into deeper waters of the Channel Islands National Marine Sanctuary (CINMS). In order for effective long-term management of the deep water reserves to occur, a well-structured monitoring program is required to assess effectiveness. The CINMS and the National Marine Sanctuary Program (NMSP) hosted a 2-day workshop in April 2005 to develop a monitoring plan for the proposed federal marine reserves in that sanctuary. Conducted at the University of California at Santa Barbara, participants included scientists from academic, state, federal, and private research institutions. Workshop participants developed project ideas that could answer priority questions posed by the NMSP. This workshop report will be used to develop a monitoring plan for the reserves. (PDF contains 47 pages.)
Resumo:
Submersible surveys at numerous reefs and banks in the northwestern Gulf of Mexico (NWGOM) were conducted as part of the Sustainable Seas Expedition (SSE) during July/August 2002 to identify reef fish communities, characterize benthic habitats, and identify deep coral reef ecosystems. To identify the spatial extent of hard bottom reef communities, the Flower Garden Banks National Marine Sanctuary (FGBNMS) and the U.S. Geological Survey (USGS) mapped approximately 2000 km2 of the Northwestern Gulf of Mexico (NWGOM) continental shelf during June 2002 with high-resolution multibeam bathymetry. Previous investigations conducted on the features of interest (with the exceptions of East and West Flower Garden and Sonnier Banks, accessible by SCUBA) had not been conducted since the 1970s and 1980s, and did not have the use of high-resolution maps to target survey sites. The base maps were instrumental in navigating submersibles to specific features at each study site during the Sustainable Seas Expedition (SSE)—a submersible effort culminating from a partnership between the National Atmospheric and Oceanic Administration (NOAA) and the National Geographic Society (NGS). We report the initial findings of our submersible surveys, including habitat and reef fish diversity at McGrail, Alderdice, and Sonnier Banks. A total of 120 species and 40,724 individuals were identified from video surveys at the three banks. Planktivorous fishes constituted over 87% by number for the three banks, ranging from 81.4% at Sonnier Banks to 94.3% at Alderdice Bank, indicating a direct link to pelagic prey communities, particularly in the deep reef zones. High numbers of groupers, snappers, jacks, and other fishery species were observed on all three features. These sites were nominated as Habitat Areas of Particular Concern (HAPC) by the Gulf of Mexico Fishery Council in March 2004. Data obtained during this project will contribute to benthic habitat characterization and assessment of the associated fish communities through future SCUBA, ROV, and submersible missions, and allow comparisons to other deep reef ecosystems found throughout the Gulf of Mexico and western Atlantic Ocean.
Resumo:
Expendable bathythermograph data collected by the Ships of Opportunity (SOOP) - Ocean Monitoring Program are analyzed for seasonal and inter-annual variations of the cold pool. Two major SOOP transects within the Middle Atlantic Bight (Southern New England and New York) have been analyzed for the years common to both (1977-81). During the years 1977-81, over 200 transects were occupied, and almost 3,000 XBT's were dropped. Results show that the cold pool is formed with the onset of spring warming and persists until fall overturn, is consistent year to year in both area and weighted average annual temperature, and advects water from the northeast to the southwest. Results also show a 100-d lag in minimum temperature between the Southern New England and New York transects. DitTerences in bathymetry between the two transects and their influence on the cold pool are also discussed. Plots of average (1977-81) bottom temperature for both transects are discussed and show consistent annual weighted mean temperature and areas. Bottom temperature plots for individual years, as well as maximum and minimum bottom temperature plots, are presented as Appendix figures. (PDF file contains 28 pages.)
Resumo:
A small isolated tide pool was studied quite intensively over a period on one month. A oensus of all animals present was taken, and a population record kept daily for the month. Fluctuations in the numbers of individuals were noted, and reasons for these fluctuations sought. The behavior and feeding habits of the various animals were noted, and an attempt was made to relate the animals to their environment. This is a student paper done for a University of California Berkeley Zoology class. Since UCB didn't have its own marine lab at the time, it rented space at Hopkins Marine Station where this work was done. Gene Haderlie went on to earn his Ph.D. from Berkeley and later became a Professor at the Naval Post Graduate School in Monterey. (PDF contains 22 pages)
Resumo:
11 specimens of Coryphaenoides armatus were collected at former dumping sites for radioactive material in the Iberian deep sea at a depth of 4700 m and their muscle tissue was analysed for four trace elements (copper, zinc, cadmium and lead) by differential pulse anodic stripping voltammetry (DPSAV). Concentrations of zinc were typical for fish muscle in general; copper content was somewhat higher than generally found in fish. The cadmium and lead contents were at a level found in fish from the open sea but the lead content of 2 specimens taken in area East-B was found to be higher.
Resumo:
PDF contains 19 pages
Resumo:
Presents a review of the recreational values and economic importance of Maryland Fishing waters. (PDF contains 5 pages)
Resumo:
The Azraq oasis lies in the Jordanian desert, about 85 km east of Amman. In this brief paper the author summarises his observations from a visit to the oasis in 1991, discusses the effects of pumping groundwater from the oasis to Amman and presents results from a plankton survey.
Resumo:
This article provides insights into a particular aspect of freshwater research in China and its wider implications for western researchers. The senior author has collaborated with Professor Zhang Zhaohui from Guizhou Normal University to investigate the travertines of China. Travertines are freshwater carbonate deposits accumulating in hard-water springs and rivers. In some areas they develop rapidly, forming picturesque ascades and magnificent travertine-dammed lakes. Some of China's most famous tourist sites are the result of travertine formation. The travertine-depositing environment is a unique fast-flowing ecosystem inhabited by specialist plants and animals. The authors examine the freshwater algae of the Doupe Pool travertine situated on the Beishuihei River in Guizhou Province and compare their distribution on travertines elsewhere in the world.
Resumo:
An extreme dry-down and muck-removal project was conducted at Lake Tohopekaliga, Florida, in 2003-2004, to remove dense vegetation from inshore areas and improve habitat degraded by stabilized water levels. Vegetation was monitored from June 2002 to December 2003, to describe the pre-existing communities in terms of composition and distribution along the environmental gradients. Three study areas (Treatment-Selection Sites) were designed to test the efficacy of different treatments in enhancing inshore habitat, and five other study areas (Whole-Lake Monitoring Sites) were designed to monitor the responses of the emergent littoral vegetation as a whole. Five general community types were identified within the study areas by recording aboveground biomasses and stem densities of each species. These communities were distributed along water and soils gradients, with water depth and bulk density explaining most of the variation. The shallowest depths were dominated by a combination of Eleocharis spp., Luziola fluitans, and Panicum repens; while the deeper areas had communities of Nymphaea odorata and Nuphar luteum; Typha spp.; or Paspalidium geminatum and Hydrilla verticillata. Mineralized soils were common in both the shallow and deep-water communities, while the intermediate depths had high percentages of organic material in the soil. These intermediate depths (occurring just above and just below low pool stage) were dominated by Pontederia cordata, the main species targeted by the habitat enhancement project. This emergent community occurred in nearly monocultural bands around the lake (from roughly 60–120 cm in depth at high pool stage) often having more diverse floating mats along the deep-water edge. The organic barrier these mats create is believed to impede access of sport fish to shallow-water spawning areas, while the overall low diversity of the community is evidence of its competitive nature in stabilized waters. With continued monitoring of these study areas long-term effects of the restoration project can be assessed and predictive models may be created to determine the efficacy and legitimacy of such projects in the future.
Resumo:
Both chemical and biological methods are used to assess the water quality of rivers. Many standard physical and chemical methods are now established, but biological procedures of comparable accuracy and versatility are still lacking. This is unfortunate because the biological assessment of water quality has several advantages over physical and chemical analyses. Several groups of organisms have been used to assess water quality in rivers and these include Bacteria, Protozoa, Algae, macrophytes, macroinvertebrates and fish. Hellawell (1978) provides an excellent review of the advantages and disadvantages of these groups, and concludes that macroinvertebrates are the most useful for monitoring water quality. Although macroinvertebrates are relatively easy to sample in shallow water (depth < 1m), quantitative sampling poses more problems than qualitative sampling because a large number of replicate sampling units are usually required for accurate estimates of numbers or biomass per unit area. Both qualitative and quantitative sampling are difficult in deep water (depth > 1m). The present paper first considers different types of samplers with emphasis on immediate samplers, and then discusses some problems in choosing a suitable sampler for benthic macroinvertebrates in deep rivers.