59 resultados para Decline in child abuse
em Aquatic Commons
Resumo:
About 86 species of fish have been recorded in the Lake Chad. Most of the species occurring in the lake are widespread including most of the commercially important species. Fish distribution in the lake was adversely affected by the 1972/73 and 1983/84 droughts. The commercially important species before the 1972/73 drought were; Lates, Labeo distichodus, Heterotis, Gymnarchus, Hydrocynus, Citharinus and Bagrus. Other species which had less commercial value at that time include, Clarias, Gnathanemus, Polypterus, Protopterus, Tilapia and Synodontis. Lates niloticus was the most predominant species of commercial importance comprising 50-60% of the total catches of fishermen between 1962 and 1973. Before the 1972/73 drought, occurrence of Clarias lazera was negligible and restricted to long line catches and had little commercial value. As a result of the drought of 1972/73 which resulted in near drying up to the northern sector of the lake, fish populations were confined to isolated pools and were completely scooped out. The remaining fish populations retreated to the southern basin where enough water always remained to hold the surviving representatives of the population. The effects of the drought resulted in occurrence of the little known C. lazera along with other hardy species like Tilapia and Protopterus to dominate the existing fish species composition. In 1976, C. lazera dominated the total catches of fishermen with 85.6%. An overview of the fish population in the lake, their relative abundance, changes in species composition, the effects of drought on the fauna of the lake based on the available data are discussed in this paper
Resumo:
The northern bluefin tuna (Thunnus thynnus) is a highly mobile apex predator in the Gulf of Maine. Despite current stock assessments that indicate historically high abundance of its main prey, Atlantic herring (Clupea harengus), commercial fishermen have observed declines in the somatic condition of northern bluefin tuna during the last decade. We examined this claim by reviewing detailed logbooks of northern bluefin tuna condition from a local fishermen’s cooperative and applying multinomial regression, a robust tool for exploring how a categorical variable may be related to other variables of interest. The data set contained >3082 observations of condition (fat and oil content and fish shape) from fish landed between 1991 and 2004. Energy from stored lipids is used for migration and reproduction; therefore a reduction in energy acquisition on bluefin tuna feeding grounds could diminish allocations to growth and gamete production and have detrimental consequences for rebuilding the western Atlantic population. A decline in northern bluefin tuna somatic condition could indicate substantial changes in the bottom-up transfer of energy in the Gulf of Maine, shifts in their reproductive or migratory patterns, impacts of fishing pressure, or synergistic effects from multiple causes.
Resumo:
During the 1990s, sea otter (Enhydra lutris) counts in the Aleutian archipelago decreased by 70% throughout the archipelago between 1992 and 2000. Recent aerial surveys in the Aleutians did not identify the eastward extent of the decline; therefore we conducted an aerial survey along the Alaska Peninsula for comparison with baseline information. Since 1986, abundance estimates in offshore habitat have declined by 27– 49% and 93 –94% in northern and southern Alaska Peninsula study areas, respectively. During this same time period, sea otter density has declined by 63% along the island coastlines within the south Alaska Peninsula study area. Between 1989 and 2001, sea otter density along the southern coastline of the Alaska Peninsula declined by 35% to the west of Castle Cape but density increased by 4% to the east, which may indicate an eastward extent of the decline. In all study areas, sea otters were primarily concentrated in bays and lagoon, whereas historically, large rafts of otters had been distributed offshore. The population declines observed along the Alaska Peninsula occurred at roughly the same time as declines in the Aleutian islands to the east and the Kodiak archipelago to the west. Since the mid-1980s, the sea otter population throughout southwest Alaska has declined overall by an estimated 56–68%, and the decline may be one of the most significant sea otter conservation issues in our time.
Resumo:
The abundance of the common starfish, Asterias forbesi, fluctuates widely over time. The starfish is a predator of pre-recruit northern quahogs, Mercenaria mercenaria. During the 1990’s, starfish became scarce in Raritan Bay and Long Island Sound. Quahog populations concurrently erupted in abundance and quahog landings have risen sharply in both locations. The extensive scale of this observation would seem to imply a cause and effect; at the least, both populations may be responding differently to a large scale exogenous factor.
Resumo:
Status of the southeastern U.S. stock of red porgy (Pagrus pagrus) was estimated from fishery-dependent and fishery-independent data, 1972–97. Annual population numbers and fishing mortality rates at age were estimated from virtual population analysis (VPA) calibrated with fishery-independent data. For the VPA, a primary matrix of catch at age was based on age-length keys from fishery-independent samples; an alternate matrix was based on fishery-dependent keys. Additional estimates of stock status were obtained from a surplus-production model, also calibrated with fishery-independent indices of abundance. Results describe a dramatic increase in exploitation of this stock and concomitant decline in abundance. Estimated fully recruited fishing mortality rate (F) from the primary catch matrix increased from 0.10/yr in 1975 to 0.88/yr in 1997, and estimated static spawning potential ratio (SPR) declined from about 67% to about 18%. Estimated recruitment to age 1 declined from a peak of 3.0 million fish in 1973–74 to 94,000 fish in 1997, a decline of 96.9%. Estimated spawning-stock biomass declined from a peak of 3530 t in 1979 to 397 t in 1997, a decline of 88.8%. Results from the alternate catch matrix were similar. Retrospective patterns in the VPA suggest that the future estimates of this population decline will be severe, but may be less than present estimates. Long-term and marked declines in recruitment, spawning stock, and catch per unit of effort (both fishery-derived and fishery-independent)are consistent with severe overexploitation during a period of reduced recruitment. Although F prior to 1995 has generally been estimated at or below the current management criterion for overfishing (F equivalent to SPR=35%), the recent spawning-stock biomass is well below the biomass that could support maximum sustainable yield. Significant reductions in fishing mortality will be needed for rebuilding the southeastern U.S. stock.
Resumo:
The fishery of Lake Wamala has declined since the lake was stocked in 1956 and opened to fishing during the 1960s. Surveys were conducted on the lake during 1975/78 and 1988/92 to investigate the causes of declining fish catches. The lake produced an average of 4000 - 6000 tonnes of fish annually from 1960s through 1970s. Total fish catches decreased from a maximum of 7100 tonnes in 1967 to less than 500 tonnes by 1990s. Catch rates decreased from about 8 kg in the 1960s to less than 1 kg per net per night by 1975. During the 1970s the catch was dominated by Oreochromis niloticus (67%) followed by Clarias gariepinus (17%), and Protopterus aethiopicus (15.1 %). By 1990s the proportion of O. niloticus had decreased to 45.1% while that of P. aethiopicus had increased to 37.6%. These changes seem to have been caused by overfishing resulting from increased fishing effort from the recommended 250 to about 1000 boats and the additional increase in effort through driving fish into the nets by beating water. The maximum size of O. niloticus in the fishery decreased from 32 cm total length in 1975/78 to 22 cm in 1988/92 while the size at first maturity decreased from about 21 cm to 14 cm during the period. This has been concurrent with a shift in the mesh size of gillnet used from 127 mm (5") in 1960s to 64 mm by 1990s. Environmental changes, especially in lake level in 1980, may also have affected the fishery.
Resumo:
The fish stocks of Lake Albert face immense exploitation pressure which has led to “fishingdown” of their fisheries, with some larger species having been driven to near-extinction, while others such as Citharinus citharus have almost disappeared. Both A. baremose (Angara) and H. forskahlii (Ngassia) historically formed the most important commercial species in Lake Albert until the early 2000s but recent Catch Assessment Surveys (2007-2013) revealed a sweeping decline in their contribution to the commercial catch from 72.7% in 1971 to less than 6% in 2013. The catch per unit effort also registered a two-fold decline from 45.6 and 36.1 kg/boat/day to 22.6 and 18.1 kg/boat/day for A. baremose and H. forskahlii respective between 1971 and 2007. Over 50% of illegal gillnets, below the legal minimum limit of four inches (101.6 mm) used on Lake Albert target the two species. Gillnet experiments found the three inch (76.2 mm) gill net mesh size suitable for sustained harvest of the two species. The study concludes that optimal utilization of the two species and probably other non target fish species is achievable through species specific management strategies, coupling species specific licensing, and controlling harvest of juvenile individuals, overall fishing effort and fish catch on Lake Albert and protecting the vulnerable fish habitats.
Resumo:
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.
Resumo:
During the course of an eight year monitoring effort, the Wisconsin Department of Natural Resources documented a significant decline in milfoil biomass and distribution in Fish Lake, Wisconsin. Average milfoil biomass declined by 40- 50% from 374-524 g dw m -2 during 1991-93 to 265 g dw m -2 during both 1994 and 1995. Milfoil recovered fully in 1996- 98 to 446- 564 g dw m -2 . The size of the milfoil bed, as discerned from aerial photographs, shrank from a maximum coverage of 40 ha in 1991 to less than 20 ha during 1995. During the “crash” of 1994-95, milfoil plants exhibited typical signs of weevil-induced damage, including darkened, brittle, hollowed-out growing tips, and the arching and collapse of stems associated with loss of buoyancy. Monitoring of weevils and stem damage during 1995-98 showed highest densities and heaviest damage occurred near shore and subsequently fanned out into deeper water from core infestation sites each spring. The extent of milfoil stem damage was positively correlated with weevil densities (monthly sampling). However, weevil densities and stem damage were lower during 1995 (when milfoil biomass was in decline) than during 1996-98 (when milfoil biomass was fully recovered).
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
For fully three decades there has been an almost steady decline in Maryland's oyster production... are alarmed for its future. Reasons for decline, data supplied,importance of brood oysters and clutch replenishment. Problems of warm weather and bacterial activity as well as tongs grinding the bottom. Conflicts in canning of early season oysters and late season crops like tomatoes. (PDF contains 16 pages)
Resumo:
At one time Maryland produced more oysters annually than the rest of the world combined, including all species used for food. This document shows the decline in production to one sixth of the 1884 yield in 1929-1930. Observations over the course of the last decade have indicated two major factors responsible for the decline in oyster production. Reduction of brood stock stands first, while failing to provide clutch (shells) for the setting purposes has been a close second. (PDF contains 29 pages)
Resumo:
Market squid (Loligo opalescens) plays a vital role in the California ecosystem and serves as a major link in the food chain as both a predator and prey species. For over a century, market squid has also been harvested off the California coast from Monterey to San Pedro. Expanding global markets, coupled with a decline in squid product from other parts of the world, in recent years has fueled rapid expansion of the virtually unregulated California fishery. Lack of regulatory management, in combination with dramatic increases in fishing effort and landings, has raised numerous concerns from the scientific, fishing, and regulatory communities. In an effort to address these concerns, the National Oceanic and Atmospheric Administration’s (NOAA) Channel Islands National Marine Sanctuary (CINMS) hosted a panel discussion at the October 1997 California Cooperative Oceanic and Fisheries Investigations (CalCOFI) Conference; it focused on ecosystem management implications for the burgeoning market squid fishery. Both panel and audience members addressed issues such as: the direct and indirect effects of commercial harvesting upon squid biomass; the effects of harvest and the role of squid in the broader marine community; the effects of environmental variation on squid population dynamics; the sustainability of the fishery from the point of view of both scientists and the fishers themselves; and the conservation management options for what is currently an open access and unregulated fishery. Herein are the key points of the ecosystem management panel discussion in the form of a preface, an executive summary, and transcript. (PDF contains 33 pages.)
Resumo:
ENGLISH: In the eastern Pacific Ocean nearly all of the commercial catches of yellowfin tuna (Thunnus albacares) and skipjack (Katsuwonus pelamis) are taken by two types of vessels, baitboats, which use pole and line in conjunction with live-bait, and purse-seiners. From its inception until very recently (1959), this fishery was dominated by baitboats. This method of fishing has been described by Godsil (1938) and Shimada and Schaefer (1956). From 1951 through 1958 baitboats caught between 66.4 and 90.8 per cent of the yellowfin and between 87.2 and 95.3 per cent of the skipjack landed by the California-based fleet. These vessels fished for tuna throughout the year and covered virtually all of the area from southern California to northern Chile. The purse-seine fishery for tunas developed out of the round-haul net fisheries for California sardines and other species. Scofield (1951) gives a detailed description of the development of gear and fishing methods. Prior to 1959 many of the seiners engaged in other fisheries during the fall and early winter months and consequently most of the fishing effort for tuna occurred in the period February-August. The vessels were quite small, averaging approximately 120 tons carrying capacity (Broadhead and Marshall, 1960), in comparison to the baitboats, of which the most numerous size-class was 201-300 tons. The seiners were naturally more restricted in range than the baitboats and most of their effort was restricted to the northern grounds. During the period 1959-61 most of the large baitboats were converted for purse-seining and the existing seiner fleet was modernized. These developments increased the range of the seiner fleet and resulted in a wider and more nearly even spatial and temporal distribution of effort. By the early part of 1961, the purse-seine fleet approximated the level of the preconversion baitboat fleet in amount of effort applied and area covered. The changes in the purse-seine fishery and the fishing methods employed in the modernized fleet are described by Orange and Broadhead (1959), Broadhead and Marshall (1960), McNeely (1961) and Broadhead (1962). The change in the relative importance of the two gears is illustrated by the decline in the proportion of the total logged tonnage landed by California-based baitboats, in comparison to the proportion landed by seiners. In 1959 baitboats landed 49.5 per cent of the yellowfin and 87.8 per cent of the skipjack. In 1960 these percentages were 22.9 and 74.7 respectively and in 1961 the decline continued to 12.6 per cent of the yellowfin and 30.0 per cent of the skipjack (Schaefer, 1962). In previous Bulletins of this Commission (Griffiths, 1960; Calkins, 1961) the baitboat catch and effort statistics were used to compute two indices of population density and an index of concentration of fishing effort and the fluctuations of these indices were analyzed in some detail. Due to the change in the relative importance of the two gears it is appropriate to extend this investigation to include the purse-seine data. The objectives of this paper are to compute two indices of population density and an index of concentration of fishing effort and to examine the fluctuations in these indices before and after the changes in the fishery. A further objective is to compare the purse-seine indices with those of the baitboats for the same time periods. SPANISH: En el Océano Pacífico Oriental casi todas las capturas comerciales del atún aleta amarilla (Thunnus albacares) y del barrilete (Katsuwonus pelamis) son efectuadas por dos tipos de barcos, los barcos de carnada que emplean la caña y el anzuelo en conjunto con la carnada viva, y los barcos rederos. Desde su comienzo hasta hace poco tiempo (1959), esta pesquería estaba dominada por los barcos de carnada. El método de pesca usado por estos barcos ha sido descrito por Godsil (1938) y por Shimada y Schaefer (1956). De 1951 a 1958, los barcos de carnada pescaron entre el 66.4 y el 90.8 por ciento del atún aleta amarilla y entre el 87.2 y el 95.3 por ciento del barrilete descargados por la flota que tiene su base en California. Estos barcos pescaron atún durante todo el año y cubrieron virtualmente toda el área de California meridional hasta la parte norte de Chile. La pesquería del atún con redes de cerco se originó en las pesquerías de las sardinas de California y otras especies, con redes que se remolcaban circularmente. Scofield (1951) dá una descripción detallada del desarrollo de los métodos y del equipo de pesca. Antes de 1959 muchos de los rederos se dedicaban a otras pesquerías durante los meses del otoño y a principios del invierno y consecuentemente, la mayor parte del esfuerzo depesca para la producción del atún ocurría en el período febrero-agosto. Las embarcaciones eran bastante pequeñas, con un promedio de aproximadamente 120 toneladas de capacidad para el transporte (Broadhead y Marshall, 1960) en comparación con los barcos de carnada, de los cuales la clase de tamaño más numerosa era de 201 a 300 toneladas. Los rederos estaban naturalmente más restringidos en su radio de acción que los barcos de carnada y la mayor parte de su esfuerzo se limitaba a las localidades del norte. Durante el período 1959-61, la mayoría de los grandes barcos de carnada fueron convertidos al sistema de pesca con redes de cerco, y se modernizó la flota existente de los rederos. Estos cambios aumentaron el alcance de la flota de los barcos rederos dando como resultado una distribución más amplia y casi más uniforme del esfuerzo espaciado y temporal. En la primera parte del año 1961, la flota de rederos se aproximó al nivel de la preconversión de la flota de clipers, en la cantidad de esfuerzo aplicado y al área comprendida. Los cambios en la pesquería con red y los métodos de pesca empleados en la flota modernizada, han sido descritos por Orange y Broadhead (1959), Broadl1ead y Marshall (1960), McNeely (1961) y Broadhead (1962). El cambio en la importancia relativa de los dos sistemas de pesca está ilustrado por la declinación en la proporción del tonelaje total registrado, como descargado por los barcos de carnada que tienen su base en California, comparado con la proporción desembarcada por los barcos rederos. En 1959 los clipers descargaron el 49.5 por ciento del atún aleta amarilla y el 87.8 por ciento del barrilete. En 1960 estos porcentajes fueron del 22.9 y 74.7 respectivamente, y en 1961 continuó la reducción hasta el 12.6 por ciento del atún aleta amarilla y el 30.0 por ciento del barrilete (Schaefer, 1962). En Boletines anteriores de la Comisión (Griffiths, 1960; Calkins, 1961) las estadísticas de la pesca y el esfuerzo de los clipers se utilizaron para computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y se analizaron algo detalladamente las fluctuaciones de estos índices. Debido al cambio en la importancia relativa de los dos sistemas de pesca, es conveniente extender esta investigación para incluir los datos correspondientes a los barcos rederos. Los objetivos del presente estudio son de computar dos índices de la densidad de población y un índice de la concentración del esfuerzo de pesca, y examinar las fluctuaciones en estos índices, antes y después de los cambios en la pesquería. Otro objetivo es de comparar los índices de los barcos rederos, con aquellos de los clipers en los mismos períodos de tiempo.
Resumo:
During 1973-88, 3,661 marine mammals of 17 species were reported as incidental catch by U.S. fishery observers aboard foreign and joint venture trawl vessels in the U.S. Exclusive Economic Zone in the North Pacific Ocean and the Bering Sea. Northern sea lions (Eumetopias jubatus) accounted for 90% of the reported incidental mortality in the Gulf of Alaska and eastern Bering Sea. Nearly half of these sea lions were taken in trawl nets in the Shelikof Strait, Alaska, joint venture fishery during 1982-84. However, high incidental mortality rates (>25 sea lions per 10,000 metric tons of groundfish catch) also occurred in the foreign fisheries near Kodiak Island and in the Aleutian Islands area in earlier years. Estimated annual mortality of incidentally caught northern sea lions in Alaska declined from 1,000 to 2,000 animals per year during the early 1970s and 1982 to fewer than 100 animals in 1988. In the Bering Sea most sea lions incidentally caught were males, while in the Gulf of Alaska females were more frequently caught. Females may also have been dominant in the incidental catch of sea lions in the Aleutian Islands area, but age and sex composition data are limited. Incidental mortality of adult female sea lions by foreign trawl fisheries in these areas could have partially contributed to the reported declines in northern sea lion populations in Alaska during the 1970s, but it cannot alone account for the present decline in population size. (PDF file contains 64 pages.)