6 resultados para Database management systems (DBMS)
em Aquatic Commons
Resumo:
Fisheries co-management is increasingly seen as a solution to the problems of resource use conflicts and overexploitation. The importance of transactions costs may not have been given adequate attention. The transaction costs are 1) information costs, 2) collective decisionmaking tools, and 3) collective operational costs. The various components of transaction costs of fisheries co-management systems are described in this paper. These costs need to be determined for evaluating the feasibility of a co-managed fishery compared to a centrally managed one.
Resumo:
It is generally accepted that co-management systems are more cost-effective than centralized management of natural resources. However, no attempts have been made to empirically verify the transaction costs involved in fisheries co-management. Some estimates of transaction costs of fisheries co-management in San Salvador Island, Philippines, are presented in this paper. These estimates are used to compare the various transaction costs in co-managed and in centrally managed fisheries in San Salvador Island.
Resumo:
To manage and process a large amount of oceanographic data, users must have powerful tools that simplify these tasks. The VODC for PC is software designed to assist in managing oceanographic data. It based on 32 bits Windows operation system and used Microsoft Access database management system. With VODC for PC users can update data simply, convert to some international data formats, combine some VODC databases to one, calculate average, min, max fields for some types of data, check for valid data…
Resumo:
Fisheries plays a significant and important part in the economy of the country contributing to foreign exchange, food security and employment creation. Lake Victoria contributes over 50% of the total annual fish catch. The purpose of fisheries management is to ensure conservation, protection, proper use, economic efficiency and equitable distribution of the fisheries resources both for the present and future generations through sustainable utilization. The earliest fisheries were mainly at the subsistence level. Fishing gear consisted of locally made basket traps, hooks and seine nets of papyrus. Fishing effort begun to increase with the introduction of more efficient flax gillnets in 1905. Fisheries management in Uganda started in 1914. Before then, the fishery was under some form of traditional management based on the do and don'ts. History shows that the Baganda had strong spiritual beliefs in respect of "god Mukasa" (god of the Lake) and these indirectly contributed to sustainable management of the lake. If a fisherman neglected to comply witt'l any of the ceremonies related to fishing he was expected to encounter a bad omen (Rev. Roscoe, 1965) However, with the introduction of the nylon gill nets, which could catch more fish, traditional management regime broke down. By 1955 the indigenous fish species like Oreochromis variabilis and Oreochromis esculentus had greatly declined in catches. Decline in catches led to introduction of poor fishing methods because of competition for fish. Government in an attempt to regulate the fishing irldustry enacted the first Fisheries Ordinance in 1951 and recruited Fisheries Officers to enforce them. The government put in place minimum net mesh-sizes and Fisheries Officers arrested fishermen without explaining the reason. This led to continued poor fishing practices. The development of government centred management systems led to increased alienation of resource users and to wilful disregard of specific regulations. The realisation of the problems faced by the central management system led to the recognition that user groups need to be actively involved in fisheries management if the systems are to be consistent with sustainable fisheries and be legitimate. Community participation in fisheries management under the Comanagement approach has been adopted in Lake Victoria including other water bodies.
Resumo:
Common property regimes are forms of resource management grounded in a set of individually accepted rights and rules for the sustainable and independent use of collective goods. Details about this resource management systems are presented in this article.
Resumo:
Concerns about perceived loss of indigenous materials emerged from multiple stakeholders during consultations to plan and design the CGIAR Research Program on Aquatic Agricultural Systems for the Borotse hub in Zambia’s Western Province. To come to grips with and address the concerns, the AAS Borotse hub program of work included an assessment of agrobiodiversity to inform community-level and program initiatives and actions. The agrobiodiversity assessment comprised three components: key informant and expert surveys complemented by review of grey and published literature, focus group discussions in the communities, and individual household surveys. This working paper reports the findings from assessments of agrobiodiversity resources in the Borotse hub by key informants and local experts working in government ministries, departments and agencies, and non-governmental organizations operating in the communities. This working paper covers the following topics: agriculture in the Borotse flood plain; major agricultural land types in the Borotse flood plain; soils and their uses; production systems; crops, including the seed sector and ex-situ resources; indigenous materials collected from the wild, including non-perennial and perennial plants, aquatic plants, and forest biodiversity; fish resources, including both capture fisheries and aquaculture; livestock resources; dietary diversity; and indigenous and local knowledge on management systems.