23 resultados para Data Models

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fisheries resource surveys are regular management tools for rational exploitation of commercial fisheries. In a growing number of cases, the use of these resource surveys has been largely restricted to assessment of the relative well being of fish stocks and the potential yields of such fisheries. This paper seeks to demonstrate that the data from such surveys can also be easily used to evaluate species diversity of such fisheries, both in terms of species richness and equitability of distribution. Using published data on two freshwater and two marine fisheries as case studies, Shannon-Wiener Diversity Function and Simpson's Index were computed for each of these fisheries. These biodiversity indices gave a deeper insight into the environmental status of each of these fisheries, beyond what the length-weight relationship models can reveal. Generally, while the marine fisheries showed more species richness, the freshwater fisheries apparently had more stable and equilibrated fish communities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book section aims to synthesise the results of the surveys related to the LVFRP by developing different strategies to implement a sustainable and participative co-management model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop and test a method to estimate relative abundance from catch and effort data using neural networks. Most stock assessment models use time series of relative abundance as their major source of information on abundance levels. These time series of relative abundance are frequently derived from catch-per-unit-of-effort (CPUE) data, using general linearized models (GLMs). GLMs are used to attempt to remove variation in CPUE that is not related to the abundance of the population. However, GLMs are restricted in the types of relationships between the CPUE and the explanatory variables. An alternative approach is to use structural models based on scientific understanding to develop complex non-linear relationships between CPUE and the explanatory variables. Unfortunately, the scientific understanding required to develop these models may not be available. In contrast to structural models, neural networks uses the data to estimate the structure of the non-linear relationship between CPUE and the explanatory variables. Therefore neural networks may provide a better alternative when the structure of the relationship is uncertain. We use simulated data based on a habitat based-method to test the neural network approach and to compare it to the GLM approach. Cross validation and simulation tests show that the neural network performed better than nominal effort and the GLM approach. However, the improvement over GLMs is not substantial. We applied the neural network model to CPUE data for bigeye tuna (Thunnus obesus) in the Pacific Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paired-tow calibration studies provide information on changes in survey catchability that may occur because of some necessary change in protocols (e.g., change in vessel or vessel gear) in a fish stock survey. This information is important to ensure the continuity of annual time-series of survey indices of stock size that provide the basis for fish stock assessments. There are several statistical models used to analyze the paired-catch data from calibration studies. Our main contributions are results from simulation experiments designed to measure the accuracy of statistical inferences derived from some of these models. Our results show that a model commonly used to analyze calibration data can provide unreliable statistical results when there is between-tow spatial variation in the stock densities at each paired-tow site. However, a generalized linear mixed-effects model gave very reliable results over a wide range of spatial variations in densities and we recommend it for the analysis of paired-tow survey calibration data. This conclusion also applies if there is between-tow variation in catchability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was an attempt to apply land-based GIS analysis for freshwater aquaculture planning in the Red River Delta of Vietnam. It was based on diverse data sources in order to help decision makers at the site and also to contribute to the modelling of selection processes for aquaculture development planning in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age estimates for striped trumpeter (Latris lineata) from Tasmanian waters were produced by counting annuli on the transverse section of sagittal otoliths and were validated by comparison of growth with known-age individuals and modal progression of a strong recruitment pulse. Estimated ages ranged from one to 43 years; fast growth rates were observed for the first five years. Minimal sexual dimorphism was shown to exist between length, weight, and growth characteristics of striped trumpeter. Seasonal growth variability was strong in individuals up to at least age four, and growth rates peaked approximately one month after the observed peak in sea surface temperature. A modified two-phase von Bertalanffy growth function was fitted to the length-at-age data, and the transition between growth phases was linked to apparent changes in physiological and life history traits, including offshore movement as fish approach maturity. The two-phase curve was found to represent the mean length at age in the data better than the standard von Bertalanffy growth function. Total mortality was estimated by using catch curve analysis based on the standard and two-phase von Bertalanffy growth functions, and estimates of natural mortality were calculated by using two empirical models, one based on longevity and the other based on the parameters L∞ and k from both growth functions. The interactions between an inshore gillnet fishery targeting predominately juveniles and an offshore hook fishery targeting predominately adults highlight the need to use a precautionary approach when developing harvest strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to a lack of data on vessel costs, earnings, and input use, many of the capacity assessment models developed in the economics literature cannot be applied in U.S. fisheries. This incongruity between available data and model requirements underscores the need for developing applicable methodologies. This paper presents a means of assessing fishing capacity and utilization (for both vessels and fish stocks) with commonly available data, while avoiding some of the shortcomings associated with competing “frontier” approaches (such as data envelopment analys