10 resultados para DIFFERENTIAL HYBRIDIZATION
em Aquatic Commons
Resumo:
Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport, were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1 and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR protein transcription. These results lend support to the growing consensus of post-transcriptional control of gene expression in dinoflagellates.
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.
Resumo:
The present experiment was designed to observe whether the nuclear volume and area are affected by the ploidy and hybrid status of the individual. Polyploidy was induced by heat shock treatment given at 44 ± 0.5°C for 30 seconds and 45 seconds which was found to be most effective (64.7%) for induction of triploidy in Cyprinus carpio. Cell and nuclear volume and cell and nuclear area varied significantly in triploid fishes as compared to those of controls. Triploid fishes showed significantly higher growth compared to diploid counterparts. It was also observed that catla x rohu hybrid and its parents showed significant difference in the nuclear volume and area of their erythrocytes. Except nuclear volume, all the parameters were significantly different between catla and catla x rohu hybrid. The hybrids showed a closer relationship with catla as compared to rohu.
Resumo:
As a part of an overall project on fishculture development techniques in Tanzania, hybridization between Tilapia zillii and Tilapia andersonii was carried out at the Freshwater Fisheries Institute, Nyegezi, Tanzania. T. andersonii, a plankton feeder, is not indigenous to Tanzania but was introduced in 1968 from Zambia for certain specific purpose. T. zillii, a macrovegetation feeder, is present locally and is common. In the present studies T. zillii (245.0 mm/260.0 g) female was hybridized with T. andersonii (288.0 mm/350.0 g) male. Under cement cistern conditions it was only after about four months of acclimatization that hybridization between the two occurred. About 1,637 interspecific hybrid fry were produced in a single brood. Eggs were adhesive and parental care shown by the female, the male being driven away. Growth under cistern conditions was slow, attaining a size of 134.8 mm/44.3 g in 10 months. But this growth rate need not be taken as ideal. In body shape, colouration and other morphometric characters the hybrids had inherited from both parents. The number of gill rakers among the hybrids was eighteen which was intermediate between T. zillii (12) and T. andersonii (27). Among one hundred and seventy two specimens (106.0 mm - 168.0 mm) cut and examined the sex ration was hundred per cent males and all of them were between II and IV stages of maturity. This is the first report of fish hybridization from Tanzania and possibly the first report on hybridization between T. zillii and T. andersonii. The full significanoe of the findings and its role in African fishculture is discussed.