17 resultados para DATA-ACQUISITION SYSTEM
em Aquatic Commons
Resumo:
This report is a detailed description of data processing of NOAA/MLML spectroradiometry data. It introduces the MLML_DBASE programs, describes the assembly of diverse data fues, and describes general algorithms and how individual routines are used. Definitions of data structures are presented in Appendices. [PDF contains 48 pages]
Resumo:
Commercially available software packages for IBM PC-compatibles are evaluated to use for data acquisition and processing work. Moss Landing Marine Laboratories (MLML) acquired computers since 1978 to use on shipboard data acquisition (Le. CTD, radiometric, etc.) and data processing. First Hewlett-Packard desktops were used then a transition to the DEC VAXstations, with software developed mostly by the author and others at MLML (Broenkow and Reaves, 1993; Feinholz and Broenkow, 1993; Broenkow et al, 1993). IBM PC were at first very slow and limited in available software, so they were not used in the early days. Improved technology such as higher speed microprocessors and a wide range of commercially available software made use of PC more reasonable today. MLML is making a transition towards using the PC for data acquisition and processing. Advantages are portability and available outside support.
Resumo:
Catch and effort assessment surveys have been used to assess trends in fish landings in Kenyan waters of Lake Victoria since 1976. Landings reached a maximum of 200000 t annually in 1989-1991 as Nile perch, Lates niloticus (L.), catches increased due to an expansion in stock size and increased fishing effort. CPUE peaked at 180 kg boat day-1 in 1989 and decreased thereafter with increasing effort. By 1998 total Nile perch catches were half those at the beginning of the decade despite increased effort. Catches of Rastrineobola argentea (Pellegrin) have levelled off despite increased effort.
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
This report describes FORTH software written for several instruments used in the NASA-sponsored project to design and build Marine Optical Buoy System (MOBS) and in the NOAA-sponsored project "EOS MODIS Execution: Oceanographic Profiling, Data Acquisition and Management for the Marine Optical Buoy System·'. In the NOAA project MLML and NOAA personnel will participate in quarterly cruises at the MOBS Hawaiian site to validate performance of SeaWiFS and will participate in several extended "process" cruises to provide wide geographic surface truthing investigations similar to those lead by Dennis Clark (NOAA) following the "launch of CZCS in 1979. In the NASA project we are designing and building MOBS, a high resolution spectroradiometer that will operate autonomously in a buoy moored west of Lanai in the Hawaiian Islands. That instrument, the "Marine Optical System" (MOS), will transmit by cellular phone in near real time observations of upwelled radiance and downwelled irradiance from three depths. [PDF contains 90 pages]
Resumo:
This report outlines the NOAA spectroradiometer data processing system implemented by the MLML_DBASE programs. This is done by presenting the algorithms and graphs showing the effects of each step in the algorithms. [PDF contains 32 pages]
Resumo:
Catching methods and ways to improve them have been engaging the attention of fishermen from time immemorial. This was done mostly by trial and error methods, as most of the earlier investigations were primarily directed towards solution of biological problems related to fisheries. In recent years several fisheries laboratories have taken up studies on the working principles of many gears such as trawls, gill nets, round haul nets etc. with the aid of instruments developed for the purpose. The purpose of this article is to review the progress made in this field and in the development of telemetering instruments and continuous data acquisition systems.
Resumo:
With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, the importance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner. Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembled a panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)
Resumo:
The economic situation of the German fishing fleet, economic indicators and backgrounds have been analysed in the overall framework of the EU-Concerted Action ‘Economic Assessment of European fishing fleets’. Trends in number of vessels, employment on board and catches for main target species are decreasing. This development may clearly be related to bad fish stock conditions, missing investment op-portunities for vessels and the short-term fishing quota man-agement system. To facilitate fisheries economics research a better data collection system is needed. As a consequence economic advice may be given for the development of a long-term sustainable management system.
Resumo:
Catch trends from Fisheries Department reports from the last eleven years (1985-1995) were analyzed. These showed a shift in the fishery from a cichlid-based system to one dominated by Nile perch and tilapias. In recent years, catches have declined from a peak in the early 1990s. Catch per unit effort appears to have remained stable except for a drop in 1995, however, this is considered dubious because the effort showed a doubling in that year. Limitations of the fisheries data collection system for the Tanzanian sector of Lake Victoria are highlighted and discussed.
Resumo:
An account is given of the activities of the Institute during the year 1995, including also reports of various projects carried out by staff members, which concerned the following: pre-recruitment ecology of the freshwater sardine (Limnothrissa miodon) in Lake Kariba (Zimbabwe); hydroacoustic surveys of kapenta abundance in Lake Kariba and Lake Cahora Bassa (Mozambique); angler's tigerfish catches, tigerfish studies and gillnet sampling; inshore fish population studies in Lake Kariba; catch/effort data recording system; fishermen's training towards the establishment of a Fisheries Co-management approach on Lake Kariba; and, enforcement and compliance with fisheries regulations within the inshore fishery on Lake Kariba.