16 resultados para Cryptic speciation
em Aquatic Commons
Resumo:
ENGLISH: The thread herrings, genus Opisthonema, family Clupeidae, are marine fishes that occur only in tropical and subtropical waters off both coasts of the American continent. The genus is composed of one Atlantic species and four Pacific species. Opisthonema oglinum (LeSueur), the single species in the western Atlantic Ocean, occurs from Brazil to Massachusetts, at Bermuda, and throughout the West Indies. Opisthonema libertate (Günther), Opisthonema bulleri (Regan), and Opisthonema medirastre, new species, are Pacific coastal species which occur together from Peru to Mexico (with at least one occasionally in California). Opisthonema berlangai, new species, is confined to the vicinity of the Galapagos Islands. SPANISH: Los arenques de hebra, género Opisthonema, familia Clupeidae, son peces marinos que se encuentran sólo en aguas tropicales y subtropicales cerca a ambas costas del continente americano. El género está compuesto de una especie en el Atlántico y de cuatro en el Pacifico. Opisthonema oglinum (LeSueur), única especie que medra el Océano Atlántico occidental, se encuentra del Brasil a Massachusetts, en Bermuda, y las Indias Occidentales. Opisthonema libertate (Günther), Opisthonema bulleri (Regan), y Opisthonema medirastre, especie nueva, son especies costaneras del Pacífico que aparecen entremezcladas del Perú a México (ocasionalmente por lo menos una de ellas en California). Opisthonema berlangai, especie nueva, está confinada a la vecindad de las Islas Galápagos.
Resumo:
The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)
Resumo:
The chemical speciation of both metals and non-metals, the use of polarographic techniques, and application to the study of the chemistry of anoxic waters are considered. In the first part of the paper unfamiliar terminology is explained and then an example of simple lake chemistry is presented to illustrate why the concept of speciation is necessary.
Resumo:
Estimating the abundance of marine macro-invertebrates is complicated by a variety of factors: 1) human factors, such as diver efficiency and diver error; and 2) biological factors, such as aggregation of organisms, crypsis, and nocturnal emergence behavior. Diver efficiency varied according to the detectability of an organism causing under-estimation of density by up to 50% in some species. All common species were aggregated at scales from 10-50 m. Transects need to be long enough to transcend the scale of patchiness to improve accuracy. Some species of sea urchins and sea cucumbers (pepinos) which are cryptic by day emerged at night so that daytime censuses underestimated their abundance by up to 10 times. In the sea cucumber fishery, estimates of abundance need to be made at the scale of the population, i.e. at hundreds of km. A strategy for this is proposed.
Resumo:
Surface- and bottom-water samples were collected from October 1996 to August 1997 to study levels of iron, copper, and cadmium species in their dissolved labile as well as non-labile and particulate forms in the waters of El-Mex Bay. The results showed that the non-labile concentration of the metals was generally more abundant than that of the labile form: its content reached more than 90% of the total dissolved metal for Cu and more than 80% for Fe. The particulate form was almost at the level of the labile form. The annual concentration of the trace metals of the labile form was 13 µglˉ¹ for Fe; 3µglˉ¹ for Cu, and 1.2 µglˉ¹ for Cd in the surface- and bottom-waters.
Resumo:
I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)
Resumo:
Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document)
Resumo:
Ghost shrimp and mud shrimp in the decapod infraorder Thalassinidea are ecologically important members of many benthic intertidal and shallow subtidal infaunal communities, largely due to the sediment filtration and mixing that result from their burrowing and feeding behavior. These activities considerably modify their immediate environment and have made these cryptic animals extremely interesting to scientists in terms of their behavior, ecology, and classification. Over 20 years ago, seven species of thalassinideans were known from the South Atlantic Bight (Cape Hatteras, NC to Cape Canaveral, FL). During this study, the examination of extensive collections from the National Museum of Natural History (NMNH), the Southeastern Regional Taxonomic Center (SERTC), and regional institutions, resulted in the identification of 14 species of thalassinideans currently known to occur within this region. The family Axiidae is represented by three species: Axius armatus, Calaxius jenneri, and Paraxiopsis gracilimana; the Callianassidae by six: Biffarius biformis, B. cf. fragilis, Callichirus major, Cheramus marginatus, Gilvossius setimanus, and Necallianassa berylae; the Calocarididae by two: Calocaris templemani and Acanthaxius hirsutimanus; and the families Laomediidae, Thomassiniidae, and Upogebiidae are each represented by one: Naushonia crangonoides, Crosniera wennerae, and Upogebia affinis, respectively. An illustrated key is presented for species level identification and supplemental notes on the ecology, distribution, and taxonomy of the species are provided.(PDF file contains 38 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)
Resumo:
Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this trend has prompted the U.S. Geological Survey and the National Park Service to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Big Cypress National Preserve, was conducted from 2002 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, and so forth.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by each amphibian species in each habitat. Opportunistic collections, as well as limited drift fence data, were used to augment the visual encounter methods for highly aquatic or cryptic species. A total of 545 visits to 104 sites were conducted for standard sampling alone, and 2,358 individual amphibians and 374 reptiles were encountered. Data analysis was conducted in program PRESENCE to provide PAO estimates for each of the anuran species. All of the amphibian species historically found in Big Cypress National Preserve were detected during this project. At least one individual of each of the four salamander species was captured during sampling. Each of the anuran species in the preserve was adequately sampled using standard herpetological sampling methods, and PAO estimates were produced for each species of anuran by habitat. This information serves as an indicator of habitat associations of the species and relative abundance of sites occupied, but it will also be useful as a comparative baseline for future monitoring efforts. In addition to sampling for amphibians, all encounters with reptiles were documented. The sampling methods used for detecting amphibians are also appropriate for many reptile species. These reptile locations are included in this report, but the number of reptile observations was not sufficient to estimate PAO for reptile species. We encountered 35 of the 46 species of reptiles believed to be present in Big Cypress National Preserve during this study, and evidence exists of the presence of four other reptile species in the Preserve. This study found no evidence of amphibian decline in Big Cypress National Preserve. Although no evidence of decline was observed, several threats to amphibians were identified. Introduced species, especially the Cuban treefrog (Osteopilus septentrionalis), are predators and competitors with several native frog species. The recreational use of off-road vehicles has the potential to affect some amphibian populations, and a study on those potential impacts is currently underway. Also, interference by humans with the natural hydrologic cycle of south Florida has the potential to alter the amphibian community. Continued monitoring of the amphibian species in Big Cypress National Preserve is recommended. The methods used in this study were adequate to produce reliable estimates of the proportion of sites occupied by most anuran species, and are a cost-effective means of determining the status of their populations.
Resumo:
The taxonomic status of Sebastes vulpes and S. zonatus were clarified by comprehensive genetic (amplif ied fragment length polymorphisms [AFLP] and mitochondrial DNA [mtDNA] variation) and morphological analyses on a total of 65 specimens collected from a single locality. A principal coordinate analysis based on 364 AFLP loci separated the specimens completely into two genetically distinct groups that corresponded to S. vulpes and S. zonatus according to body coloration and that indicated that they are reproductively isolated species. Significant morphological differences were also evident between the two groups; 1) separation by principal component analysis based on 31 measurements, and 2)separation according to differences in counts of gill rakers and dorsal-fin spines without basal scales, and in the frequencies of specimens with small scales on the lower jaw. Restriction of gene flow between the two groups was also indicated by the pairwise ΦST values estimated from variations in partial sequences from the mtDNA control region, although the minimum spanning network did not result in separation into distinct clades. The latter was likely due to incomplete lineage sorting between S. vulpes and S. zonatus owing to their recent speciation.
Resumo:
We provide morphological and molecular evidence to recognize a new species of skate from the North Pacific, Bathyraja panthera. We also resurrect the skate subgenus Arctoraja Ishiyama, confirming its monophyly and the validity of the subgenus. Arctoraja was previously recognized as a distinct subgenus of Breviraja and later synonymized with Bathyraja (family Rajidae). Although the nominal species of Arctoraja have all been considered synonyms of Bathyraja parmifera by various authors, on the basis of morphometric, meristic, chondrological, and molecular data we recognize four species, including the new species. Species of Arctoraja are distributed across the North Pacific Ocean and adjacent seas from southern Japan to British Columbia. Bathyraja parmifera is abundant in the eastern Bering Sea, Aleutian Islands, and northern Gulf of Alaska; B. smirnovi is a western Pacific species found in the Sea of Okhotsk and Sea of Japan; B. simoterus is restricted to waters around the northern and eastern coasts of Hokkaido, Japan; and the new species B. panthera is restricted to the western Aleutian Islands. Bathyraja panthera is diagnosed by its color pattern of light yellow blotches with black spotting on a greenish brown background, high thorn and vertebral counts, chondrological characters of the neurocranium and clasper, and a unique nucleotide sequence within the mitochondrial cytochrome oxidase gene. Furthermore, the species presently recognized as Bathyraja parmifera exhibits two haplotypes among specimens from Alaska, suggesting the possibility of a second, cryptic species.
Resumo:
Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region.
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.
Resumo:
Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.