3 resultados para Crude Protein

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundnut cake (GNC) meal is an important source of dietary protein for domestic animals with a cost advantage over the conventional animal protein sources used in aquaculture feed production. It would be useful to evaluate the effects of GNC processing methods on the density and nutritional values of processed GNC meals. The use of processed GNC meals in the diets of Clarias gariepinus fingerlings was evaluated. Seven iso-proteic and iso-caloric diets were formulated, replacing fish meal with roasted and boiled GNC meals, each at three inclusion levels of 30%, 35%, and 40%. Diet I is 100% fishmeal, Diet II is 30% roasted GNC meal, Diet III is 35% roasted GNC meal, Diet IV is 40% roasted GNC meal, Diet V is 30% boiled GNC meal, Diet VI is 35% boiled GNC meal and Diet VII is 40% boiled GNC meal. Results showed that the crude protein content of GNC meals was 40.5% and 40.8% in boiled and roasted GNC meals respectively; the lower protein content for processed GNC meals might be due to heat denaturation of the seed protein, with boiled GNC meal being more adversely affected. The mean weight gain of fingerlings fed roasted GNC meals ranged between 5.29 – 5.64 while for boiled GNC meals, it was between 4.60 – 5.22. Generally, fish performed better when fed diets containing roasted GNC meals, than boiled GNC meals, and compared favorably with fish fed fish meal based diet. Body mass increase, total feed increase, protein efficiency ratio and specific growth rate by C. gariepinus fingerlings in all diets, showed no significant differences, suggesting that processed GNC meals could partially replace diets for C. gariepinus fingerlings without adverse consequences. This study showed that processed GNC meals could partially replace fish meal up to 30% without significantly influencing fingerling growth and health. It is recommended that the use of fish meal as the main basal ingredient for fingerlings could be discontinued, since GNC meal was a cheaper alternative, and could replace fish meal up to 35%, without any significant adverse effects on the fingerling performance. KEYWORDS: Clarias gariepinus, Fingerlings, Groundnut cake meal, Nutrient utilization, Performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alestes baremoze (Joannis, 1835), locally known as Angara in Uganda, is native to fresh water systems in Africa, thriving well in both lacustrine and riverine conditions. It is part of the routine diets of families in northern Uganda, South Sudan, the Sudan and the Democratic Republic of Congo. The objective of this study was to determine the proximate composition and mineral contents of A. baremoze fillets according to fish size. The mineral contents of A. baremoze from Lake Albert were analysed using standard procedures. The fish samples were categorised into three size-groups; <1 kg (880–990g), 1-1.5 kg and 1.6-2.5 kg. On wet weight basis, there were no significant differences (p>0.05) in crude protein and ash content among the different fish sizes. However, there were significant differences (p<0.05) in crude fat, carbohydrate, gross energy and vitamin A. Crude fat (0.35%), carbohydrate (0.37%) and gross energy (597.6 Kcal/100 g) were significantly higher in medium sized fish (1 to 1.5 kg) compared with the larger fish category. Vitamin A contents of different fish sizes ranged from 55.1 to75.3 μg RAE/100g. The contents of magnesium and iron were highest in sizes <1 kg (5.34 mg/100 g) and (3.58 mg/100 g), respectively. It was observed that potassium content (339.33 mg/100 g) and calcium (29.75 mg/100 g) were significantly higher (p<0.05) in fish >1.5 kg. These findings suggest that taste, freshness and other related external appearances should not be the only factors to be considered in making choice for marketing and consumption of Alestes baremoze.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L-carnitine is required for the transfer of long-chain fatty acids from the cytosol to the mitochondrial matrix for 13-oxidation of them and ractopamine, beta adrenergic agonists, have potential stimulating lipolysis and altering rates of protein degradation and synthesis. Present study was carried out to improve lipid body oxidation and protein-sparing action of fish through addition of L-carnitine and ractopamine to diet of rainbow trout, Oncorhynchus mykiss, Walbaum 1972. An eight-week feeding trial was carried out to evaluate the effects of supplementation of tree levels of L-carnitine tartrate (0, 1 and 2 g/kg) and two levels of ractopamine hydrochloride (0 and 10 ppm) on growth performance, fillet muscle fatty acid compositions and blood biochemical parameters in 288 juvenile rainbow trout (130 g) at 3X2 factorial experimental design. Ractopamine and 1 g/kg carnitine improved the specific growth rate, feed conversion ratio, protein efficiency ratio and weight gain at the end of experiment. The protein and lipid contents of fillet muscle were affected by the inclusion of 10 mg/kg ractopamine in the diet, increasing crude protein and reducing crude fat (P<0.05) of fish fillet muscle. The highest protein and lowest fat contents of fish fillet were observed in diet that contains 2 g/kg carnitine plus ractopamine. Ractopamine and carnitine increased levels of albumin, total protein and globulin in fish blood serum, but carnitine increased triacylglycerol and cholesterol. Fatty acids compositions of fish fillet were also affected by ractopamine and carnitine. All fatty acids except for eicosapentaenoic acid and docosahexaenoic acid, were increased by dietary supplementation of ractopamine. Total saturated fatty acids were not affected by carnitine. Supplementation (P>0.05). However, total n-3 poly unsaturated fatty acids were reduced by carnitine supplementation. A significant interaction was observed between ractopamine and carnitine supplementation regarding the saturated (P<0.01) and n-3 poly unsaturated fatty acid (P<0.001) of fish fillet. This study shows that supplementation of 1 g/kg carnitine and 10 ppm ractopamine could improve performance of juvenile rainbow trout and their combination in diet results in protein increment, fat reduction and change in profile of fatty acids in fillet muscle.