4 resultados para Crack Formation in Soils

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In consecutive greenhouse studies, growth and propagule formation were examined first in monoecious hydrilla [Hydrilla verticillata (L.f.) Royle], then in dioecious hydrilla, at three temperature levels (25, 30, and 35 C) and contrasted over three periods of growth (8, 12 and 16 wks). Each biotype was grown under natural photoperiods, decreasing from 14 hrs (in Oct, Nov, and Dec). For both biotypes, total biomass and root-to-shoot ratios were significantly reduced at 35 C; greater biomass was produced both at 25 and 30C. Increases in growth period generally enhanced total biomass and shoot production; however, shoot length was unresponsive to growth periods beyond 8 wks. The 35C treatment strongly impeded tuber formation and eliminat4ed the production of axillary turions; the number and biomass of these propagules peaked at lower temperatures under short photoperiods after 12 to 16 wks. Shoot elongation was stimulated with increases in temperature and was especially pronounced in the dioecious biotype. Notably, in the monoecious biotype, the number of shoots as a potential source of fragments, and tuber production (although reduced) occurred at relatively high levels under unfavorably hihg-temperature (35C) conditions. These results suggest that monoecious hydrilla may be better adapted to high temperatures than previously shown, and that the distribution of both biotypes in the U.S. could overlap further in southern states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inter and intra-annual variation in year-class strength was analyzed for San Francisco Bay Pacific herring (Clupea pallasi) by using otoliths of juveniles. Juvenile herring were collected from March through June in 1999 and 2000 and otoliths from subsamples of these collections were aged by daily otolith increment analysis. The composition of the year classes in 1999 and 2000 were determined by back-calculating the birth date distribution for surviving juvenile herring. In 2000, 729% more juveniles were captured than in 1999, even though an estimated 12% fewer eggs were spawned in 2000. Spawning-date distributions show that survival for the 2000 year class was exceptionally good for a short (approximately 1 month) period of spawning, resulting in a large abundance of juvenile recruits. Analysis of age at size shows that growth rate increased significantly as the spawning season progressed both in 1999 and 2000. However, only in 2000 were the bulk of surviving juveniles a product of the fast growth period. In the two years examined, year-class strength was not predicted by the estimated number of eggs spawned, but rather appeared to depend on survival of eggs or larvae (or both) through the juvenile stage. Fast growth through the larval stage may have little effect on year-class strength if mortality during the egg stage is high and few larvae are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehram group includes Faraghan, Dalan and Kangan formations. Kangan formation ages lower terias. That is one of the important reservoir rocks of southern Iran and Persian Gulf. In this research Kangan formation is studied in two A and B wells. Based on 75 studies on thin section, four carbonate litho acies association A, B, C, D with 12 subfacies are identified. A lithofacies association includes 4 subfacies: A1, A2, A3 and A4. B lithofacies association consists of 3 subfacies: B1, B2 and B3. C lithofacies association consists of 3 subfacies: C1, C2, C3 and D lithofacies association includes 2 subfacies: D1 and D2. On the base of studies lithofacies association of Kangan formations are formed in 3 environments of: Tidal Flat, Lagoon and Barrier Shore Complex in a Carbonated Platform Ramp type. Diagenetic processes have effected this formation. The most important Diagenetic processes are: Cementation, Anhydritization, Micrization, Neomorphism, Bioturbation, Dissolution, Compaction, Dolomitization and Porosity. Sequence staratigraphy studies were performed base on the vertical and horizontal relationship of lithofacies association and well logging in gamma ray and sonic type that causes the identification of two sedimentary sequences: First sedimentary sequence includes: Transgressive System Tract (TST) and High Stand System Tract (HST). The lower boundary of this sequence is in Sequence Boundary 1 (SB1) which shows unconformities of Dalan and Kangan that are Permian-terias unconformities. The upper boundary is in Sequence Boundary 2 (SB2) type that is identified by carbonate facies associated by anhydrite nodular. Second sedimentary sequence includes: TST and HST. Lower and upper boundaries of these sequences are both in SB2 type. The lower and upper boundary is made of carbonate facies with anhydrite nodular.