3 resultados para Core temperature
em Aquatic Commons
Resumo:
The aim of the investigation was to prove if different farming conditions like conventional and organical farming of rainbow trout may cause differences in quality which are detectable by physical methods such as colour measurement and differential scanning calorimetry. Colour measurement revealed remarkable differences in lightness. Smoked trouts originating from conventionally farmed fish were much lighter than those of organically farmed trouts. This difference in L* could already be found when colour measurements were taken on the raw material. However, during chilled storage differences were equalized. Redness and yellowness were not significantly influenced by farming and did not change remarkably during chill storage. Based on earlier investigations on changes in thermal stability caused by heating, DSC curves of smoked trout could be used to verify that the core temperature of smoked fish had reached at least 60 °C during hot smoking process. This temperature is demanded by the guidelines of the German Food Code. In the DSC curves only the actin peak was still visible. All other proteins were obviously denatured during the hot smoking. When DSC curves were taken from smoked trout after different durations of chilled storage it could be seen that the denaturation temperature of actin decreased almost linearly with progression of storage time.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Stable isotope data obtained from snow and ice cores retrieved from an altitude of 5340m on Mt. Logan (60°30'N; 140°36'W) indicate that "isotopic seasons" are not generally in phase with calendar seasons. The former are phase lagged with respect to the latter by up to several months and appear to be correlated with SST'S and ocean heat transfer curves and/or the position of the Aleutian low rather than with air temperature or the temperature difference between the ocean surface and the core site.