4 resultados para Core data set
em Aquatic Commons
Resumo:
In April 2005, a SHOALS 1000T LIDAR system was used as an efficient alternative for safely acquiring data to describe the existing conditions of nearshore bathymetry and the intertidal zone over an approximately 40.7 km2 (11.8 nm2) portion of hazardous coastline within the Olympic Coast National Marine Sanctuary (OCNMS). Data were logged from 1,593 km (860 nm) of track lines in just over 21 hours of flight time. Several islands and offshore rocks were also surveyed, and over 24,000 geo-referenced digital still photos were captured to assist with data cleaning and QA/QC. The 1 kHz bathymetry laser obtained a maximum water depth of 22.2 meters. Floating kelp beds, breaking surf lines and turbid water were all challenges to the survey. Although sea state was favorable for this time of the year, recent heavy rainfall and a persistent low-lying layer of fog reduced acquisition productivity. The existence of a completed VDatum model covering this same geographic region permitted the LIDAR data to be vertically transformed and merged with existing shallow water multibeam data and referenced to the mean lower low water (MLLW) tidal datum. Analysis of a multibeam bathymetry-LIDAR difference surface containing over 44,000 samples indicated surface deviations from –24.3 to 8.48 meters, with a mean difference of –0.967 meters, and standard deviation of 1.762 meters. Errors in data cleaning and false detections due to interference from surf, kelp, and turbidity likely account for the larger surface separations, while the remaining general surface difference trend could partially be attributed to a more dense data set, and shoal-biased cleaning, binning and gridding associated with the multibeam data for maintaining conservative least depths important for charting dangers to navigation. (PDF contains 27 pages.)
Resumo:
During 1993, a comprehensive data set of scale readings, length and weight measurements was established for migratory salmonids on the River Lune. This information was collected using three methods of fish capture: 1. The Lune estuary commercial nets. 2. River Lune Forge weir fish trap. 3. River Lune rod catch scale returns. Additional information was contributed by the Kent, Leven and Duddon rod and commercial fisheries. The data shows that the salmon stock in 1993 was dominated by two year old smolts. This varies from year to year. The sea trout population displays a normal population curve in terms of numbers of fish in each age and weight class. The growth rate of salmon and sea trout is very similar even though salmon have the benefit of high sea feeding.
Resumo:
A new method of finding the optimal group membership and number of groupings to partition population genetic distance data is presented. The software program Partitioning Optimization with Restricted Growth Strings (PORGS), visits all possible set partitions and deems acceptable partitions to be those that reduce mean intracluster distance. The optimal number of groups is determined with the gap statistic which compares PORGS results with a reference distribution. The PORGS method was validated by a simulated data set with a known distribution. For efficiency, where values of n were larger, restricted growth strings (RGS) were used to bipartition populations during a nested search (bi-PORGS). Bi-PORGS was applied to a set of genetic data from 18 Chinook salmon (Oncorhynchus tshawytscha) populations from the west coast of Vancouver Island. The optimal grouping of these populations corresponded to four geographic locations: 1) Quatsino Sound, 2) Nootka Sound, 3) Clayoquot +Barkley sounds, and 4) southwest Vancouver Island. However, assignment of populations to groups did not strictly reflect the geographical divisions; fish of Barkley Sound origin that had strayed into the Gold River and close genetic similarity between transferred and donor populations meant groupings crossed geographic boundaries. Overall, stock structure determined by this partitioning method was similar to that determined by the unweighted pair-group method with arithmetic averages (UPGMA), an agglomerative clustering algorithm.
Resumo:
This is a report on the Analysis of Data and a Prioritisation of Sites at the Cheshire Meres by the Institute of Freshwater Ecology. The report addresses data collected by the Agency for 24 basin sites in Cheshire. At least two samples were collected from each site, though not simultaneously. Sites were visited in May/June and in November. The determinands are standard and they included: water, temperature, conductivity, pH, DO, fractional white light penetration, TSS, chlorophyll, TP, ortho-phosphate, nitrate-, nitrite-, ammonium and silicate. Though concentrations were often higher than for other lakes in the region, rather exceeding criteria for classification as eutrophic lakes, the results confirmed that the series of lakes is, naturally, highly eutrophic and nothing in the present data differs so far from expectation that is persuasive that the ecosystems are reacting adversely to environmental stress. The data set is review and summarised, site-by-site, in an appendix. The grounds for prioritisation are discussed. Whether or not this preferred prioritised option is adopted, the Agency is recommended to review the way it carries out monitoring. The determinands and the sampling frequency need to be geared to the information that is required.