2 resultados para Coordination of autonomous robots
em Aquatic Commons
Resumo:
The formation of the cartilage tissue depends on the coordination of cell to cell or cell to ECM interaction that cause to the cell polarity, migration and differentiation of precursor mesenchymal cells during chondrogenesis Many of these events are mediated by ECM components such as glycocojugates which with their suger residues such as galactose or aminosuger have a ligand role for regulatory molecules. The aim of this study was to identify the presence and distribution of some different glycoconjugates and their suger residues in the chondrogenesis by histochemistry and lectin-histochemistry techniques. For this purpose, embryos from pregnant wistar rats from E12-E20 were collected and fixed. Some of them were stained with alizarin red Salcin blue staining to demonstrate cartilage and bone formation in whole mount embryos. Other embryos with serial sections (5-7micm thikness) were stained by: 1-alcian blue (pH: l) for S-GAG,2-alcin blue (pH:2.5)for C-GAG, S-PAS alcian blue fora neutral and acidic sugers,4- tuloidin blue for metachromatic substances. Stained sections were graded according to the staining intensity (0-5 grading s method). Statistical analysis showed significant difference for those substances among experimental groups. Lectin histochemistry with MPA, VVA, SBA, OFA demonstrated differences between organs for suger residues during chondrogensis. It seems that synthesis and secretion of glycocojugates and change of their suger residues follows a spatiotemporal pattern and developmentaly regulated.
Resumo:
In this study, numerical simulation of the Caspian Sea circulation was performed using COHERENS three-dimensional numerical model and field data. The COHERENS three-dimensional model and FVCOM were performed under the effect of the wind driven force, and then the simulation results obtained were compared. Simulation modeling was performed at the Caspian Sea. Its horizontal grid size is approximately equal to 5 Km and 30 sigma levels were considered. The numerical simulation results indicate that the winds' driven-forces and temperature gradient are the most important driving force factors of the Caspian circulation pattern. One of the effects of wind-driven currents was the upwelling phenomenon that was formed in the eastern shores of the Caspian Sea in the summer. The simulation results also indicate that this phenomenon occurred at a depth less than 40 meters, and the vertical velocity in July and August was 10 meters and 7 meters respectively. During the upwelling phenomenon period the temperatures on the east coast compared to the west coast were about 5°C lower. In autumn and winter, the warm waters moved from the south east coast to the north and the cold waters moved from the west coast of the central Caspian toward the south. In the subsurface and deep layers, these movements were much more structured and caused strengthening of the anti-clockwise circulation in the area, especially in the central area of Caspian. The obtained results of the two models COHERENS and FVCOM performed under wind driven-force show a high coordination of the two models, and so the wind current circulation pattern for both models is almost identical.