4 resultados para Continuous Monitoring

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the Oak Mere continuous monitoring summary report, 1997 to 2000 from the Environment Agency North West. This report focuses on the continuous monitoring programme made by a multi -parameter probe in Oak Mere since summer 1997. From 1999 nutrient and chlorophyll samples were taken when the water quality instrument was serviced. Water level measurements were made since 1998. Moreover, the report shows a summary Oak mere water quality of each year (1997-2000). The physico-chemical parameters and nutrient levels included are: temperature, specific conditions, dissolved oxygen, pH, Depth, secchi disc measurements, chlorophyll a, total Phosphorus, orto-Phosphate, Nitrate, Ammonia, and Silicate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is the Stillwaters monitoring programme summary results 2000 from the Environment Agency. In May 1997, a Stillwaters meeting was held to discuss the way forward in stillwaters monitoring. It decided upon the establishment of a three year rolling programme, in which three stillwaters would be monitored three times a year, every third year. During 2000, stillwaters monitored for the fourth year of the Stillwaters Monitoring Programme were Hatch Mere, Marbury Big Mere, Comber Mere, Tabley Mere, Tatton Mere and Melchett Mere. Algal, zooplankton and water chemical samples were taken on all meres. Surveys of Tabley Mere and Comber Mere continued on from last year when water quality concerns were highlighted. Continuous monitoring in Oak Mere, including water level data continued in 2000. Fish surveys were carried out in Tatton Mere and Comber Mere. Tabley Mere survey was abandoned due to the awkward bathymetry of the mere. No invertebrate samples were taken in 2000 due to lack of resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Following the commencement of construction works of a 250 MW hydropower plant at Dumbbell Island in the Upper Victoria Nile in September 2007, BEL requested NaFIRRI to conduct continuous monitoring of fish catches at two transects i.e. the immediate upstream transect of the project site (Kalange-Makwanzi) and the immediate downstream .transect (Buyala-Kikubamutwe). The routine monitoring surveys were designed to be conducted twice a week at each of the tWo transects. It was anticipated that major immediate impacts were to occur during construction, and these needed to be known by BEL as part of a mitigation strategy. For example, the construction of it cofferdam could be accompanied by rapid changes in water quality and quantity downstream of the construction. These changes in turn could affect the fish catch and would probably be missed by the quarterly monitoring already in place. Therefore, a major cbjective of the more regular and rapid monitoring was to discern immediate impacts of construction activities by focusing on selected water quality parameters (total suspended solids, water conductivity, temperature, dissolved oxygen and pH) and fish catch characteristics (total catch, catch rates and value of the catch)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]