8 resultados para Consultas geo-espaciais

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geo-morphology, ecology and fish production of the 92 rivers of Rajshahi division have been presented in this paper. Fifteen rivers are dead and 11 rivers have severe erosion problem. Siltation has increased in 66 rivers and depth has decreased in 11 rivers. Sixty nine rivers are suffering from low flow conditions. Fish diversity has decreased in 20 rivers while fish production has declined in 75 rivers. A total of 31 fish species have extinct, 25 species are under threat of extinction and 43 species have low production. Siltation and pollution are the major causes of fish habitat loss. Recommendations are made to protect and conserve fish habitat and riverine fisheries of Rajshahi division.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrilla ( Hydrilla verticillata (L.f.) Royle), an invasive aquatic weed, continues to spread to new regions in the United States. Two biotypes, one a female dioecious and the other monoecious have been identified. Management of the spread of hydrilla requires understanding the mechanisms of introduction and transport, an ability to map and make available information on distribution, and tools to distinguish the known U.S. biotypes as well as potential new introductions. Review of the literature and discussions with aquatic scientists and resource managers point to the aquarium and water garden plant trades as the primary past mechanism for the regional dispersal of hydrilla while local dispersal is primarily carried out by other mechanisms such as boat traffic, intentional introductions, and waterfowl. The Nonindigenous Aquatic Species (NAS) database is presented as a tool for assembling, geo-referencing, and making available information on the distribution of hydrilla. A map of the current range of dioecious and monoecious hydrilla by drainage is presented. Four hydrilla samples, taken from three discrete, non-contiguous regions (Pennsylvania, Connecticut, and Washington State) were examined using two RAPD assays. The first, generated using primer Operon G17, and capable of distinguishing the dioecious and monoecious U.S. biotypes, indicated all four samples were of the monoecious biotype. Results of the second assay using the Stoffel fragment and 5 primers, produced 111 markers, indicated that these samples do not represent new foreign introductions. The differences in the monoecious and dioecious growth habits and management are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In April 2005, a SHOALS 1000T LIDAR system was used as an efficient alternative for safely acquiring data to describe the existing conditions of nearshore bathymetry and the intertidal zone over an approximately 40.7 km2 (11.8 nm2) portion of hazardous coastline within the Olympic Coast National Marine Sanctuary (OCNMS). Data were logged from 1,593 km (860 nm) of track lines in just over 21 hours of flight time. Several islands and offshore rocks were also surveyed, and over 24,000 geo-referenced digital still photos were captured to assist with data cleaning and QA/QC. The 1 kHz bathymetry laser obtained a maximum water depth of 22.2 meters. Floating kelp beds, breaking surf lines and turbid water were all challenges to the survey. Although sea state was favorable for this time of the year, recent heavy rainfall and a persistent low-lying layer of fog reduced acquisition productivity. The existence of a completed VDatum model covering this same geographic region permitted the LIDAR data to be vertically transformed and merged with existing shallow water multibeam data and referenced to the mean lower low water (MLLW) tidal datum. Analysis of a multibeam bathymetry-LIDAR difference surface containing over 44,000 samples indicated surface deviations from –24.3 to 8.48 meters, with a mean difference of –0.967 meters, and standard deviation of 1.762 meters. Errors in data cleaning and false detections due to interference from surf, kelp, and turbidity likely account for the larger surface separations, while the remaining general surface difference trend could partially be attributed to a more dense data set, and shoal-biased cleaning, binning and gridding associated with the multibeam data for maintaining conservative least depths important for charting dangers to navigation. (PDF contains 27 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stress response, at the molecular level, of the soft corals Dendronephthya klunzingeri and Heteroxenia sp., hard corals Acropora hyacinthus and A. valenciennesi, an ascidian Symplegma sp. and sponges Latruncula cortica and Callyspongia crassa to germanium oxide (GeO sub(2)) was evaluated. Evaluation was carried out using bioindicators. such as the level of expression of each of the heat shock proteins (HSPs) and the silicatein enzyme in response to the compound. However, the expression was measured by SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) and western blotting. The harmful concentration of GeO sub(2) that produced noticeable molecular changes in the studied samples during the first 6-24 hours was 6 μg/ml. The two studied soft corals as well as the ascidian responded to the harmful concentration of germanium oxide by expressing the heat-shock protein 90 (hsp90), while the two hard corals responded by expressing hsp70, C. crassa by decreasing the level of silicatein enzyme and sponge L. cortica produced no change by any of the used biomarkers, The soft coral Heteroxenia sp. was found to be sensitive to mechanical stress during the experiment and it was more sensitive to 6 μg/ml of GeO sub(2) than the other soft coral D. klunzingeri. The two studied hard corals were sensitive to mechanical stress during the experiment, but A. hyacinth us showed higher sensitivity than A. valenciennesi. However, these 2 corals displayed reverse response to GeO sub(2). Primitive evidences were found in the SDS PAGE to distinguish the tissue of the soft coral from that of the hard coral on the molecular level; the soft coral showed two prominent protein bands (45 and 50 kDa) while the two prominent protein bands for hard corals were 31 and 116 kDa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Wamala, a small lake (180 km2) located in Central Uganda and believed to have been part of the main Lake Victoria and only got separated about 4000 years ago, has already undergone different levels of fisheries evolution that warrant using it as a case study to inform changes in other systems. Using resources provided by the Lake Victoria Environmental Management Project (LVEMP) II, under the Applied Research Facility, we evaluated the fishing inputs, socio-economic infrastructure and analyzed trends in fishery benefits to guide evolution of management advice. A frame survey was conducted on the entire lake (13th - 23rd March 2012) enumerating all fishing factors and enlisting available and accessible socio-economic infrastructure along the shores of the lake. The lake traverses districts (Gomba, Mityana, and Mubende) with its largest portion lying in Mityana. There are 26 established fish landing sites and about 600 fishers with a similar number of boats on the lake. The total number of boats on the lake is almost equal to the number of fishers; illustrating the common type (paracute) and size (Small, about 4 m) of boats and hence a fishing crew structure of one fisher per boat. Main fishing gears are Gillnets targeting the tilapia (Ngege) and long line hooks (Protperus, Mamba, and Clarias, Male). Almost equal number of boats used the two main gears on the lake (about 300 each). 97% of the gill nets on the lake are small (3.5” (8.9 cm – 4.5” – 11.4 cm) stretched mesh size while 98% of the hoots are large (< size 10). The implication is gill net fishers target small tilapia while long line fishers aim at the large mamba and male. Generally the lake has poor socio-economic infrastructure compared to other lakes of Uganda probably due to its geo-morphological setting. The lakes fishing factors have continued to expand with the ever increasing population. There may be need to check the continued entry into the fisheries especially if the increasing effort does not translate into increase in fishery yield.