11 resultados para Conductivity meter VWR EC300
em Aquatic Commons
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
This study assessed the physico-chemical quality of River Ogun, Abeokuta, Ogun state, Southwestern Nigeria. Four locations were chosen spatially along the water course to reflect a consideration of all possible human activities that are capable of changing the quality of river water. The water samples were collected monthly for seven consecutive months (December 2011 – June 2012) at the four sampling stations. pH, air temperature (℃), water temperature (℃), conductivity (µs/cm) and total dissolved solids (mg/L) were conducted in-situ with the use of HANNA Combo pH and EC multi meter Hi 98129 and Mercury-in-glass thermometer while dissolved oxygen (mg/L), nitrate (mg/L), phosphate (mg/L), alkalinity (mg/L) and hardness (mg/L) were determined ex-situ using standard methods. Results showed that dissolved oxygen, hydrogen ion concentration, total hardness and nitrate were above the maximum permissible limit of National Administration for Food, Drugs and Control (NAFDAC), Standard Organization of Nigeria (SON), Federal Environmental Protection Agency (FEPA), United States Environmental Protection Agency (USEPA), European Union (EU) and World Health Organization (WHO) for drinking water during certain months of the study period. Results also showed that water temperature and conductivity were within the permissible limits of all the standards excluding FEPA. However, total dissolved solids and alkalinity were within the permissible limits of all the standards. Adejuwon and Adelakun, (2012) also reported similar findings on Rivers Lala, Yobo and Agodo in Ewekoro local government area of Ogun state, Nigeria. Since most of the parameters measured were above the maximum permissible limits of the national and international standards, it can be concluded that the water is unfit for domestic uses, drinking and aquacultural purposes and therefore needs to be treated if it is to be used at all. The low dissolved oxygen values for the first four months was too low i.e. < 5 mg/L. This is most likely as a result of the amount of effluents discharged into the river. To prevent mass extinction of aquatic organisms due to anoxic conditions, proper regulations should be implemented to reduce the organic load the river receives.
Resumo:
A self-contained electronic solid-state instrument capable of measuring the tension between the different parts of a trawl net in operation, has been designed and developed for the measurement in the range 0 to 300 kg with an accuracy of ± 2 kg. The instrument is useful for measuring the resistance to motion of various accessories of a trawl net. It consists of an inductive type underwater tension transducer and an electronic indicating meter kept on board the vessel, both the units being connected by electric cable.
Resumo:
A portable type warp load meter has been developed for the use in fishing trawlers. The instrument enables to monitor the warp load in fishing trawlers accurately and easily without disturbing the routine fishing operations. The instrument can be used in several other places like cranes, bollard tests for marine engines, dry docks etc. especially when the operation has to be conducted easily without disturbing the load system. The information displayed in micro ammeter in the range 0 to 1000 kg can be fed to continuous recorders for detailed analysis and permanent records.
Resumo:
Development of a portable self-contained electronic meter for on the spot determination of temperature and salinity is described. Instant and remote measurements of temperature and salinity of sea and estuarine waters in the range of 25-30°C and 30-35°C for temperature with an accuracy ± 0.05°C and 0-37‰ and 31-37‰ for salinity with an accuracy of ± 0.2‰ and ± 0.05‰ respectively are possible with the instrument. The temperature compensations of the salinity measurements are done manually with the help of temperature charts. The temperature and salinity measurements can be fed to continuous recorders.
Resumo:
Thermal diffusivity (α) and conductivity (K) of fresh and dry cured fish at different moisture levels were investigated by a calorimeter (regular regime) method and transient line source technique. Thermal conductivity has a linear correlation with packing density and percentage water content. K values calculated from formula method and line source technique are comparable.
Resumo:
Blanching is an important operation in the shrimp canning process, in order to bring down the moisture content of the product to the required level, to allow the proteins to coagulate and to give proper texture, shape and characteristic pink colour to the meat. It has been observed that among other factors responsible for fluctuations in the drained weight in the canned prawns, concentration of brine used for blanching and the duration of blanching are important (Varma, Chaudhury and Pillai 1961). The papers gives details of experiments
Resumo:
An instrument developed for the rapid and accurate measurement of brine concentrations during blanching without disturbing the routine blanching operation is described. The concentration is sensed by a platinum electrode conductivity cell and displayed in a moving coil meter after conversion of the electrical signals into D.C. voltage. The instrument can measure in the range 5 to 12% with an accuracy of ± 1%. The errors caused mostly are those due to wide temperature variations of the brine between 95 to 102°C and the unknown quantities of protein.
Resumo:
The paper describes the development of an electronic instrument to measure the torque developed on the propeller shaft of fishing vessels at various speeds of the propeller. By measuring the torque, it is possible to determine the actual power transmitted from the engine gear-box unit to the propeller so that propeller efficiency can be evaluated and the optimum size of the propeller for a specific engine and vessel can be determined.
Resumo:
This study was carried out for recognized ichthyophon and investigation of feeding and effects of water temperature, salinity and electrical conductivity on the population dynamic of Barbus grypus in the Dalaki and Helle river. In the study period, 2949 Barbus grypus was cached. The most of total length frequency was 200 to 300 mm and 2 to 3 years old. The oldest fish was8 years old with 756 mm total length. Fecundity was 950 upto 57400 oocyt per fish. Station no. 6 and 7 showed more temperature, fecundity and GSI than other stations. Females adulated before then males. Multiple stepwise regression of fecundity and RE (reproduction effort) showed significant correlation. Fishes of the upper parts of stream was more L than down stream stations. Condition factor of males was more than female, and for down stream stations was better than the other stations. Barbus grypus is omnivorous. Ichthyophon of Dalaki river include 4 family and 9 species that Capoeta capoeta intermadia was more than others species, but in the Helle river was 5 family and 9 species, that Liza abu zarudni was more than others.