398 resultados para Coho salmon

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present new information on seasonal variation in absolute growth rate in length of coho salmon (Oncorhynchus kisutch) in the ocean off Oregon and Washington, and relate these changes in growth rate to concurrent changes in the spacing of scale circuli. Average spacing of scale circuli and average rate of circulus formation were significantly and positively correlated with average growth rate among groups of juvenile and maturing coho salmon and thus could provide estimates of growth between age groups and seasons. Regression analyses indicated that the spacing of circuli was proportional to the scale growth rate raised to the 0.4−0.6 power. Seasonal changes in the spacing of scale circuli reflected seasonal changes in apparent growth rates of fish. Spacing of circuli at the scale margin was greatest during the spring and early summer, decreased during the summer, and was lowest in winter or early spring. Changes over time in length of fish caught during research cruises indicated that the average growth rate of juvenile coho salmon between June and September was about 1.3 mm/d and then decreased during the fall and winter to about 0.6 mm/d. Average growth rate of maturing fish was about 2 mm/d between May and June, then decreased to about 1 mm/d between June and September. Average apparent growth rates of groups of maturing coded-wire−tagged coho salmon caught in the ocean hook-and-line fisheries also decreased between June and September. Our results indicate that seasonal change in the spacing of scale circuli is a useful indicator of seasonal change in growth rate of coho salmon in the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2002, representative samples of migrating Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) adult populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1998) comprised 86% of the spring chinook, 51% of the summer chinook, and 51% of the bright fall chinook salmon population. Five-year-old fish (BY 1997) comprised 13% of the spring chinook, 43% of the summer chinook, and 11% of the bright fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly five-year-old fish (55%), with 40% returning as four-year-olds in 2002. For the coho salmon population, 88% of the population was three-year-old fish of age class 1.1, while 12% were age class 1.0. Length analysis of the 2002 returns indicated that chinook salmon with a stream-type life history are larger (mean length) at age than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2002 chinook salmon were analyzed. Chinook salmon of age classes 1.2 and 1.3 show a significant increase in mean length over the duration of the migration. A year class regression over the past 14 years of data was used to predict spring, summer, and bright fall chinook salmon population sizes for 2003. Based on three-year-old returns, the relationship predicts four-year-old returns of 54,200 (± 66,600, 90% predictive interval [PI]) spring chinook, 23,800 (± 19,100, 90% PI) summer, and 169,100 (± 139,500, 90% PI) bright fall chinook salmon for the 2003 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 36,300 (± 35,400, 90% PI) spring, 63,800 (± 10,300, 90% PI) summer, and 91,100 (± 69,400, 90% PI) bright fall chinook salmon for the 2003 runs. The 2003 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the ocean distributions of wild juvenile coho salmon off the Oregon-Washington coast. In this study we report tag recoveries and genetic mixed-stock estimates of juvenile fish caught in coastal waters near the Columbia River plume. To support the genetic estimates, we report an allozyme-frequency baseline for 89 wild and hatchery-reared coho salmon spawning populations, extending from northern California to southern British Columbia. The products of 59 allozyme-encoding loci were examined with starch-gel electrophoresis. Of these, 56 loci were polymorphic, and 29 loci had P0.95 levels of polymorphism. Average heterozygosities within populations ranged from 0.021 to 0.046 and averaged 0.033. Multidimensional scaling of chord genetic distances between samples resolved nine regional groups that were sufficiently distinct for genetic mixed-stock analysis. About 2.9% of the total gene diversity was due to differences among populations within these regions, and 2.6% was due to differences among the nine regions. This allele-frequency data base was used to estimate the stock proportions of 730 juvenile coho salmon in offshore samples collected from central Oregon to northern Washington in June and September-October 1998−2000. Genetic mixed-stock analysis, together with recoveries of tagged or fin-clipped fish, indicates that about one half of the juveniles came from Columbia River hatcheries. Only 22% of the ocean-caught juveniles were wild fish, originating largely from coastal Oregon and Washington rivers (about 20%). Unlike previous studies of tagged juveniles, both tag recoveries and genetic estimates indicate the presence of fish from British Columbia and Puget Sound in southern waters. The most salient feature of genetic mixed stock estimates was the paucity of wild juveniles from natural populations in the Columbia River Basin. This result reflects the large decrease in the abundances of these populations in the last few decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Catch of coho salmon off the coast of Washington and Oregon since 1925 appears to be related to large-scale events in the atmosphere, which in turn affect ocean currents and coastal upwelling intensities in the northeastern Pacific. At least two time scales of variations can be identified. The first is that of the El Nino/Southern Oscillation phenomenon giving rise to an irregular cycle of between 3 to 7 years. ... The second time scale of variation seems to have a periodicity of about 20 years, although this is based on a limited dataset. ... This paper endeavors to describe how, if real, these atmospheric/oceanic effects are integrated and might affect the salmon catch. The possibility must also be considered that the atmospheric events are symbiotically related to the oceanic events and, further, that both may be enmeshed in even longer-term variability of climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fifteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1995 through June 30, 1996. For all programs, 134,213 steelhead trout,(Oncorhynchus mykiss), 7,742,577 chinook salmon,(~ tshawytscha),and 25,075 coho salmon(~ kisutch) were planted. (PDF contains 26 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fourteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1996 through June 30, 1997. For all programs, 208,922 steelhead trout, (Oncorhynchus mykiss), 10,334,457 chinook salmon,(O. tshawytscha),and 60,681 coho salmon(O. kisutch) were planted. (PDF contains 24 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report is a summary of the results of 883 purse seine sets made for juvenile salmonids during 15 cruises off the coasts of Oregon and Washington during the springs and summers of 1981-1985. Juvenile coho salmon (Oncorhynchus kisutch) occurred most frequently, followed by chinook salmon (0. tshawytscha). The juveniles of these two species co-occurred more frequently than expected. Juvenile chum, pink and sockeye salmon (0. keta, O. gorbuscha, and O. nerka), steelhead (0. mykiss) and cutthroat trout (0. clarki clarki) were caught much less frequently and in lower numbers than coho or chinook salmon. We found no evidence of large schools ofjuvenile salmonids. A northerly movement of juvenile coho salmon wa~ suggested by decreased catches off Oregon and increased catches off Washington between early and late summer. Highest catch per set of juvenile coho salmon was usually found inshore of 37.2 km. Juvenile chinook salmon were usually found within 27.9 km of the coast. Juvenile salmonids were found over a broad range of surface salinities and temperatures. High catches of juvenile coho salmon occurred in both the low salinity waters of the Columbia River plume and in adjacent higher salinity waters. Preferences for specific salinities or temperatures were not obvious for any species, although catch rates of juvenile coho salmon were highest in years when chlorophyll content was also high. Based on expansions of fish with coded wire tags, we estimated that hatchery coho salmon smolts comprised 74%, on average, of the juvenile coho salmon catches. The remaining 26% were presumably wild fish or hatchery fish released as fingerlings. Hatchery coho salmon were caught roughly in proportion to the numbers released. However, hatchery fish from the Columbia River and private coastal facilities were caught at slightly higher rates while those from coastal Washington and public coastal Oregon hatcheries were caught at slightly lower rates than expected from the numbers released. No juvenile coho salmon with coded wire tags were caught that had originated from either California or Puget Sound hatcheries. (PDF file contains 88 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The food habits of 20 species of pelagic nekton were investigated from collections made with small-mesh purse seines from 1979-84 off Washington and Oregon. Four species (spiny dogfish, Squalus acanthias; soupfin shark, Galeorhinus zyopterus; blue shark, Prionace glauca; and cutthroat trout, Salmo clarki) were mainly piscivorous. Six species (coho salmon, Oncorhynchus kisutch; chinook salmon, O. tshawytscha; black rockfish, Sebastes melanops; yellowtail rockfish, S. f1avidus; sablefish, Anoplopoma fimbria; and jack mackerel, Trachurus symmetricus) consumed both nektonic and planktonic organisms. The remaining species (market squid, Loligo opalescens; American shad, Alosa sapidissima; Pacific herring, Clupea harengus pallasi; northern anchovy, Engraulis mordax; pink salmon, O. gorbuscha; surf smelt, Hypomesus pretiosus; Pacific hake, Merluccius productus; Pacific saury, Cololabis saira; Pacific mackerel, Scomber japonicus; and medusafish, Icichthys lockingtom) were primarily planktonic feeders. There were substantial interannual, seasonal, and geographic variations in the diets of several species due primarily to changes in prey availability. Juvenile salmonids were not commonly consumed by this assemblage of fishes (PDF file contains 36 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the incidental catches of American shad (Alosa sapidissima) taken during research cruises and in commercial and recreational landings along the Pacific coast of North America during over 30 years of sampling. Shad, an introduced species, was mainly found over the shallow continental shelf, and largest catches and highest frequency of occurrences were found north of central Oregon, along the coasts of Washington and Vancouver Island, and in California around San Francisco Bay. Migrations to the north off Washington and Vancouver were seen during spring to fall, but we found no evidence for large-scale seasonal migrations to the south during the fall or winter. The average weight of shad increased in deeper water. Sizes were also larger in early years of the study. Most were caught over a wide range of sea surface temperatures (11–17°C) and bottom temperatures (6.4–8.0°C). Abundance of shad on the continental shelf north of 44°N was highly correlated with counts of shad at Bonneville Dam on the Columbia River in the same year. Counts were negatively related to average weights and also negatively correlated with the survival of hatchery coho salmon (Oncorhynchus kisutch), indicating that survival of shad is favored by warm ocean conditions. Examining the catch during research cruises and commercial and recreational landings, we concluded that American shad along the Pacific coast have adapted to the prevailing environmental conditions and undertake only moderate seasonal migrations compared with the long seasonal migrations of shad along the Atlantic coast of North America. We suggest that the large spawning populations in the Columbia River and San Francisco Bay areas explain most of the distributional features along the Pacific coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assessment and management of risk is needed for sustainable use of genetically modified aquatic organisms (aquatic GMOs). A computer software package for safely conducting research with genetically modified fish and shellfish is described. By answering a series of questions about the organism and the accessible aquatic ecosystem, a researcher or oversight authority can either identify specific risks or conclude that there is a specific reason for safety of the experiment. Risk assessment protocols with examples involving transgenic coho salmon, triploid grass carp and hybrid tilapia are described. In case a specific risk is identified, the user is led to consider risk management measures, involving culture methods, facilities design and operations management, to minimize the risk. Key features of the software are its user-friendly organization; easy access to explanatory text, literature citations and glossary; and automated completion of a worksheet. Documented completion of the Performance Standards can facilitate approval of a well designed experiment by oversight authorities.