70 resultados para Coastal and Estuarine Modeling II
em Aquatic Commons
Resumo:
This report was developed to help establish National Ocean Service priorities and chart new directions for research and development of models for estuarine, coastal and ocean ecosystems based on user-driven requirements and supportive of sound coastal management, stewardship, and an ecosystem approach to management. (PDF contains 63 pages)
Resumo:
The aim of this study was to develop a short-term genotoxicity assay for monitoring the marine environment for mutagens. Based on the developing eggs and embryos of the marine mussel Mytilus edulis, an important pollution indicator species, the test employs the sensitive sister chromatid exchange (SCE) technique as its end-point, and exploits the potential of mussel eggs to accumulate mutagenic pollutants from the surrounding sea water. Mussel eggs take up to 6 months to develop while in the gonad, which provides scope for DNA damage to be accumulated over an extended time interval; chromosome damage is subsequently visualised as SCEs in 2-cell-stage embryos after these have been spawned in the laboratory. Methods which measure biological responses to pollutant exposure are able to integrate all the factors (internal and external) which contribute to the exposure. The new cytogenetic assay allows the effects of adult exposure to be interpreted in cells destined to become part of the next generation.
Resumo:
The spatial and temporal occurrence of Atlantic bottlenose dolphins (Tursiops truncatus) in the coastal and estuarine waters near Charleston, SC were evaluated. Sighting and photographic data from photo-identification (ID), remote biopsy, capture-release and radio-tracking studies, conducted from 1994 through 2003, were analyzed in order to further delineate residence patterns of Charleston area bottlenose dolphins. Data from 250 photo-ID, 106 remote biopsy, 15 capture-release and 83 radio-tracking surveys were collected in the Stono River Estuary (n = 247), Charleston Harbor (n = 86), North Edisto River (n = 54), Intracoastal Waterway (n = 26) and the coastal waters north and south of Charleston Harbor (n = 41). Coverage for all survey types was spatially and temporally variable, and in the case of biopsy, capture-release and radio-tracking surveys, data analyzed in this report were collected incidental to other research. Eight-hundred and thirty-nine individuals were photographically identified during the study period. One-hundred and fifteen (13.7%) of the 839 photographically identified individuals were sighted between 11-40 times, evidence of consistent occurrence in the Charleston area (i.e., site fidelity). Adjusted sighting proportions (ASP), which reflect an individual’s sighting frequency in a subarea relative to other subareas after adjusting for survey effort, were analyzed in order to evaluate dolphin spatial occurrence. Forty-three percent (n = 139) of dolphins that qualified for ASP analyses exhibited a strong subarea affiliation while the remaining 57% (n = 187) showed no strong subarea preference. Group size data were derived from field estimates of 2,342 dolphin groups encountered in the five Charleston subareas. Group size appeared positively correlated with degree of “openness” of the body of water where dolphins were encountered; and for sightings along the coast, group size was larger during summer months. This study provides valuable information on the complex nature of bottlenose dolphin spatial and temporal occurrence near Charleston, SC. In addition, it helps us to better understand the stock structure of dolphins along the Atlantic seaboard.
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Mapping reef fish and the seascape: using acoustics and spatial modeling to guide coastal management
Resumo:
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value.
Resumo:
Bangladesh has no naturally occurring Artemia, and all the growing shrimp hatcheries of the country depend entirely on import of cysts from foreign countries. Following successful inoculation of Artemia and production of cysts for the first time in this country in a coastal saltpan (at Chanua, Banskhali) by the senior author (in 1989-90), a similar second attempt was made under this programme in a saltpan (1000 m super(2)) of Demoshia, Chakaria, Cox's Bazar, Bangladesh between January and April 1992. A total of 1639.9 g (dry weight) of cysts (i.e. 5.46 kg DW/ha/month) have been produced using the Red Jungle Brand, whereas the previous attempt obtained 517 g of cysts (i.e. 2.07 kg DW/ha/month) using the Great Salt Lake Brand.
Resumo:
This exercise is the application of an analytical method for systematically modeling ecosystems data to observations made on a naturally eutrophic, mesohaline planktonic microcosm. The theory and experimental design are briefly outlined and the particular steps in the acutal modeling process follow. Then there is a discussion as to how the whole endeavor can be refined to culminate in models with predictive capabilities. (PDF has 16 pages.)
Resumo:
Three of California’s four National Marine Sanctuaries, Cordell Bank, Gulf of the Farallones, and Monterey Bay, are currently undergoing a comprehensive management plan review. As part of this review, NOAA’s National Marine Sanctuary Program (NMSP) has collaborated with NOAA’s National Centers for Coastal Ocean Science (NCCOS) to conduct a biogeographic assessment of selected marine resources using geographic information system (GIS) technology. This report complements the analyses conducted for this effort by providing an overview of the physical and biological characteristics of the region. Key ecosystems and species occurring in estuarine and marine waters are highlighted and linkages between them discussed. In addition, this report describes biogeographic processes operating to affect species’ distributional patterns. The biogeographic analyses build upon this background to further understanding of the biogeography of this region. (PDF contaons 172 pages)
Resumo:
As more people discover coastal and marine protected areas as destinations for leisure-time pursuits, the task of managing coastal resources while providing opportunities for high quality visitor experiences becomes more challenging. Many human impacts occur at these sites; some are caused by recreation and leisure activities on-site, and others by activities such as agriculture, aquaculture, or residential and economic development in surrounding areas. Coastal management professionals are continually looking for effective ways to prevent or mitigate negative impacts of visitor use. (PDF contains 8 pages) Most coastal and marine protected area managers are challenged with balancing two competing goals—protection of natural and cultural resources and provision of opportunities for public use. In most cases, some level of compromise between the goals is necessary, where one goal constrains or “outweighs” the other. Often there is a lack of clear agreement about the priority of these competing goals. Consequently, while natural resource decisions should ultimately be science-based and objective, such decisions are frequently made under uncertainty, relying heavily upon professional judgment. These decisions are subject to a complex array of formal and informal drivers and constraints—data availability, timing, legal mandate, political will, diverse public opinion, and physical, human, and social capital. This paper highlights assessment, monitoring, and planning approaches useful to gauge existing resource and social conditions, determine feasibility of management actions, and record decision process steps to enhance defensibility. Examples are presented from pilot efforts conducted at the Rookery Bay National Estuarine Research Reserve (NERR) and Ten Thousand Islands National Wildlife Refuge (NWR) in South Florida.
Resumo:
Stomach contents of 110 franciscanas (Pontoporia blainvillei), from northern Argentina were analysed in order to improve our knowledge about the feeding habits of this species and to better characterise the lactation period. The samples included calves, juveniles and adults of both sexes. Evidence of predation by franciscanas is seen at a very young age (2.5-3 months), with a transition diet composed by both milk and solid food, mainly represented by crustaceans. Weaning seems to begin by April, when franciscanas are about 6-7 months old. Franciscanas inhabiting two different habitats were analysed in this study: a brackish water estuary and an adjacent marine coastal system. The diet of Pontoporia blainvillei in northern Argentina was composed by a total of 26 prey species: 20 teleosts, 4 crustaceans and 2 cephalopods. Based on the Index of Relative Importance (IRI) the main prey species were Cynoscion guatucupa, Micropogonias furnieri, Loligo sanpaulensis and Urophycis brasiliensis. Estuarine franciscanas preyed mainly on Micropogonias furnieri (dominant species), Cynoscion guatucupa, Odonthestes argentinensis and Macrodon ancylodon, while dolphins from marine areas preyed mainly on Cynoscion guatucupa (dominant species), Loligo sanpaulensis and Urophycis brasiliensis. Our results confirm that franciscanas prey mainly on juvenile fish (< 8cm) and small loliginid squids, in close agreement with previous results obtained in southern Brazil and Uruguay. Qualitative and quantitative differences observed in the diet of dolphins from each habitat emphasise the need to discriminate between samples from different habitats and environmental parameters. SPANISH: Se analizaron 110 contenidos estomacales de franciscanas (Pontoporia blainvillei) provenientes de la costa norte de Argentina, para extender en conocimiento sobre su dieta y caracterizar la lactancia. Las muestras incluyeron cachorros, juveniles y adultos de ambos sexos. Las primeras etapas de predación se inician a muy temprana edad (2,5-3 meses), presentando una dieta de transición compuesta tanto por leche como por presas sólidas, principalmente crustáceos; el destete se iniciaría a partir de abril, a una edad estimada entre 6 y 7 meses. Las franciscanas estudiadas provienen de dos habitats diferentes: un área estuarial de baja salinidad y la region marina adyacente. La dieta de Pontoporia blainvillei de Argentina estuvo compuesta por un total de 26 especies: 20 teleósteos, 4 crustáceos y 2 cefalópodos. Basados en el Indice de Importancia Relativa (IIR), las presas más importantes fueron Cynoscion guatucupa, Micropogonias furnieri, Loligo sanpaulensis y Urophycis brasiliensis. Las franciscanas provenientes del área estuarial predaron principalmente sobre Micropogonias furnieri (especie dominante), Cynoscion guatucupa, Odonthestes argentinensis y Macrodon ancylodon, mientras que los delfines marinos predaron sobre Cynoscion guatucupa (especie dominante), Loligo sanpaulensis y Urophycis brasiliensis. Nuestros resultados confirman que la franciscana preda sobre peces juveniles (< 8cm) y pequeños calamares Loliginidae, coincidiendo con resultados previos obtenidos en el sur del Brasil y Uruguay. Las diferencias cualitativas y cuantitativas observadas en la dieta de cada uno de las áreas analizadas, nos sugieren que los futuros estudios sobre ecología trófica de la franciscana deberían discriminarse de acuerdo al origen de los ejemplares y a la tipificación del ambiente.
Resumo:
NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.
Resumo:
Young-of-year (YOY) blue-fish (Pomatomus saltatrix) along the U.S. east coast are often assumed to use estuaries almost exclusively during the summer. Here we present data from 1995 to 1998 indicating that YOY (30–260 mm FL) also use ocean habitats along the coast of New Jersey. An analysis of historical and recent data on northern and southern ocean beaches (0.1–2 m) and the inner continental shelf (5–27 m) during extensive sampling in New Jersey waters from 1995 to 1998 indicated that multiple cohorts occurred (June–August) in every year. When comparable collections of YOY were made in the ocean and in an adjacent estuary, the abundance was 1–2 orders of magnitude greater on ocean beaches during the summer. The YOY were even more abundant in ocean habitats in the fall (September–October), presumably as a result of YOY leaving estuaries to join the coastal migration south. During 1999 and 2000, YOY bluefish were tagged with internal sequential coded wire microtags in order to refine our under-standing of habitat use and movement. Few (0.04%) of the fish tagged on ocean beaches were recaptured; however, 2.2% of the fish tagged in the estuary were recaptured from 2 to 27 days after tagging. Recaptured fish grew quickly (average 1.37 mm FL/d). On ocean beaches YOY fed on a variety of invertebrates and fishes but their diet changed with size. By approximately 80–100 mm FL, they were piscivorous and fed primarily on engraulids, a pattern similar to that reported in estuaries. Based on distribution, abundance, and feeding, both spring- and summer-spawned cohorts of YOY bluefish commonly use ocean habitats. Therefore, attempts to determine factors affecting recruitment success based solely on estuarine sampling may be inadequate and further examination, especially of the contribution of the summer-spawned cohort in ocean habitats, appears warranted.
Resumo:
A review is made of the environmental features of Karwar coastal waters, describing the currents, waves, inshore water hydrology and bottom features of the bay. The intertidal and the estuarine environment are described, considering various environmental stress factors. Future prospects regarding man's effects on the environment, such as development projects, are discussed briefly.
Resumo:
The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)
Resumo:
This study on marine protected areas (MPAs) in Mexico relies on a variety of data sources as well as the authors’ longstanding field experience, particularly in the Yucatan Peninsula, to analyze the design, establishment and operation of protected areas. It discusses two case studies of MPAs in detail and summarizes the findings from four others, focusing primarily on the role played by local communities in managing coastal and marine resources. The study also draws on the perspective of key informants, namely, Mexican experts on coastal and ocean management issues, including government officials, decisionmakers, researchers, members of non governmental organizations (NGOs), and consultants. (97 pp.)