16 resultados para Clinical consequences
em Aquatic Commons
Ongoing monitoring of Tortugas Ecological Reserve: Assessing the consequences of reserve designation
Resumo:
Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata, across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before - After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages)
Resumo:
(PDF contains 50 pages)
Resumo:
Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness.
Resumo:
Zostera marina is a member of a widely distributed genus of seagrasses, all commonly called eelgrass. The reported distribution of eelgrass along the east coast of the United States is from Maine to North Carolina. Eelgrass inhabits a variety of coastal habitats, due in part to its ability to tolerate a wide range of environmental parameters. Eelgrass meadows provide habitat, nurseries, and feeding grounds for a number of commercially and ecologically important species, including the bay scallop, Argopecten irradians. In the early 1930’s, a marine event, termed the “wasting disease,” was responsible for catastrophic declines in eelgrass beds of the coastal waters of North America and Europe, with the virtual elimination of Z. marina meadows in the Atlantic basin. Following eelgrass declines, disastrous losses were documented for bay scallop populations, evidence of the importance of eelgrass in supporting healthy scallop stocks. Today, increased turbidity arising from point and non-point source nutrient loading and sediment runoff are the primary threats to eelgrass along the Atlantic coast and, along with recruitment limitation, are likely reasons for the lack of recovery by eelgrass to pre-1930’s levels. Eelgrass is at a historical low for most of the western Atlantic with uncertain prospects for systematic improvement. However, of all the North American seagrasses, eelgrass has a growth rate and strategy that makes it especially conducive to restoration and several states maintain ongoing mapping, monitoring, and restoration programs to enhance and improve this critical resource. The lack of eelgrass recovery in some areas, coupled with increasing anthropogenic impacts to seagrasses over the last century and heavy fishing pressure on scallops which naturally have erratic annual quantities, all point to a fishery with profound challenges for survival.
From the Conquest to Ecotourism: Environmental Consequences of Human Activities in Coastal Argentina
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources are rapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases. Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs. Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along the coastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shift of the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.
Resumo:
In this report we have attempted to evaluate the ecological and economic consequences of hypoxia in the northern Gulf of Mexico. Although our initial approach was to rely on published accounts, we quickly realized that the body of published literature deahng with hypoxia was limited, and we would have to conduct our own exploratory analysis of existing Gulf data, or rely on published accounts from other systems to infer possible or potential effects of hypoxia. For the economic analysis, we developed a conceptual model of how hypoxia-related impacts could affect fisheries. Our model included both supply and demand components. The supply model had two components: (1) a physical production function for fish or shrimp, and (2) the cost of fishing. If hypoxia causes the cost of a unit of fishing effort to change, then this will result in a shift in supply. The demand model considered how hypoxia might affect the quality of landed fish or shrimp. In particular, the market value per pound is lower for small shrimp than for large shrimp. Given the limitations of the ecological assessment, the shallow continental shelf area affected by hypoxia does show signs of hypoxia-related stress. While current ecological conditions are a response to a variety of stressors, the effects of hypoxia are most obvious in the benthos that experience mortality, elimination of larger long-lived species, and a shifting of productivity to nonhypoxic periods (energy pulsing). What is not known is whether hypoxia leads to higher productivity during productive periods, or simply to a reduction of productivity during oxygen-stressed periods. The economic assessment based on fisheries data, however, failed to detect effects attributable to hypoxia. Overall, fisheries landings statistics for at least the last few decades have been relatively constant. The failure to identify clear hypoxic effects in the fisheries statistics does not necessarily mean that they are absent. There are several possibilities: (1) hypoxic effects are small relative to the overall variability in the data sets evaluated; (2) the data and the power of the analyses are not adequate; and (3) currently there are no hypoxic effects on fisheries. Lack of identified hypoxic effects in available fisheries data does not imply that effects would not occur should conditions worsen. Experience with other hypoxic zones around the globe shows that both ecological and fisheries effects become progressively more severe as hypoxia increases. Several large systems around the globe have suffered serious ecological and economic consequences from seasonal summertime hypoxia; most notable are the Kattegat and Black Sea. The consequences range from localized loss of catch and recruitment failure to complete system-wide loss of fishery species. If experiences in other systems are applicable to the Gulf of Mexico, then in the face of worsening hypoxic conditions, at some point fisheries and other species will decline, perhaps precipitously.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A chronology of documented regional and global warm and cold event records is collated along with documented ecosystem response records and health threat/sequellae records for the historical period. Patterns of societal response to cold periods punctuated by warm periods have been associated with considerable human health impacts, stimulated by blooms in disease vectors such as rodents and insects.
Resumo:
The occurrence of diseases is a significant setback for successful aquafarming. One of the common fish bacterial disease syndromes, Edwardsiellosis is caused by Edwardsiella tarda, a gram-negative, rod shaped bacterium associated with several diseases of marine and fresh water fish. In this study, an attempt was made to observe and analyze the onset of clinical symptoms and certain haematological parameters in Koi Carp, Cyprinus carpio L., following artificial infection with Edwardsiella tarda. The disease progress was observed and the clinical symptoms were monitored over a period of 15 days following infection. Fish were sampled at three day intervals to analyse the haematological parameters: total erythrocyte counts (RBC), total leucocyte counts (WBC), haemoglobin content and differential leucocyte count. Clinical symptoms observed included: erratic swimming behaviour, loss of appetite, haemorrhages, dropsy and exophthalmia. There was a significant decrease in the total RBC and haemoglobin levels by the 3rd and 6th day post infection, and an increase thereafter. WBC counts were higher in all infected groups in comparison to the control group. A significant increase in the number of neutrophils was found in the infected group up to the 9th day and a decrease thereafter. The lymphocyte number was significantly less up to the 12th day while the monocyte counts were significantly higher up to the 12th day post infection. The results showed that the bacterium, E. tarda, is pathogenic to Koi Carp. The hematological changes and clinical signs in infected fish reported in this paper will be helpful in the identification and the control of this infection.