24 resultados para Cleaver, William, bp. of St. Asaph, 1742-1815.
em Aquatic Commons
Resumo:
Research has shown that aquatic weeds, particularly hydrilla ( Hydrilla verticillata , (L.F.) Royle), can be controlled with exposure of 8 to 12 weeks with concentrations of 10 to 15 ppb of fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl) phenyl]-4(1 H )- pyridinone) (Haller et al. 1990 and Fox et al. 1994). Fluridone label recommendations restrict the use of the treated waters for irrigation of turf or newly seeded crops and seed beds for 30 days following the last application of the herbicide. The objective of this research was to determine the effects of 10 weeks of irrigation with fluridone containing water on a common Florida residential turfgrass.
Resumo:
Endoparasitic helminths were inventoried in 483 American plaice (Hippoglossoides platessoides) collected from the southern Gulf of St. Lawrence, NAFO (North Atlantic Fisheries Organization) division 4T, and Cape Breton Shelf (NAFO subdivision 4Vn) in September 2004 and May 2003, respectively. Forward stepwise discriminant function analysis (DFA) of the 4T samples indicated that abundances of the acanthocephalans Echinorhynchus gadi and Corynosoma strumosum were significant in the classification of plaice to western or eastern 4T. Cross validation yielded a correct classification rate of 79% overall, thereby supporting the findings of earlier mark-recapture studies which have indicated that 4T plaice comprise two discrete stocks: a western and an eastern stock. Further analyses including 4Vn samples, however, indicated that endoparasitic helminths may have little value as tags in the classification of plaice overwintering in Laurentian Channel waters of the Cabot Strait and Cape Breton Shelf, where mixing of 4T and 4Vn fish may occur.
Resumo:
The interaction of ocean climate and growth conditions during the postsmolt phase is emerging as the primary hypothesis to explain patterns of adult recruitment for individual stocks and stock complexes of Atlantic salmon (Salmo salar). Friedland et al. (1993) first reported that contrast in sea surface temperature (SST) conditions during spring appeared to be related to recruitment of the European stock complex. This hypothesis was further supported by the relationship between cohort specific patterns of recruitment for two index stocks and regional scale SST (Friedland et al., 1998). One of the index stocks, the North Esk of Scotland, was shown to have a pattern of postsmolt growth that was positively correlated with survival, indicating that growth during the postsmolt year controls survival and recruitment (Friedland et al., 2000). A similar scenario is emerging for the North American stock complex where contrast in ocean conditions during spring in the postsmolt migration corridors was associated with the recruitment pattern of the stock complex (Friedland et al., 2003a, 2003b). The accumulation of additional data on the postsmolt growth response of both stock complexes will contribute to a better understanding of the recruitment process in Atlantic salmon.
Resumo:
An overview of the fisheries of St. Lucia using currently available information is presented. The fisheries are entirely artisanal, characterized by relatively simple and inexpensive gears and boats. The 2,100 fishers (who land roughly 750 t per year of fish) appear socially and economically marginalized and beset by low occupational mobility. The status of the major species groups they exploit are briefly discussed, and initial indications of overfishing are noted. Consideration on both resource and resource-user situations in management of the island's fisheries is emphasized.
Resumo:
Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.
Resumo:
NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html
Resumo:
This technical memorandum describes a developing project under the direction of NOAA’s Biogeography Branch in consultation with the National Park Service and US Geological Survey to understand and quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands. The purpose of this report is to describe and disseminate the initial results from the project and to share information on the location of acoustic receivers and species electronic tag ID codes. The Virgin Islands Coral Reef National Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), was established by Executive Order in 2000, but resources within the monument are poorly documented and the degree of connectivity to VIIS is unknown. Whereas, VICRNM was established with full protection from resource exploitation, VIIS has incurred resource harvest by fishers since 1956 as allowed in its enabling legislation. Large changes in local reef communities have occurred over the past several decades, in part due to overexploitation. In order to better understand the habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St, John, an array of hydroacoustic receivers was deployed while a variety of reef fish species were acoustically tagged. In July 2006, nine receivers with a detection range of ca. 350 m were deployed in Lameshur Bay on the south shore of St. John, within VIIS. Receivers were located adjacent to reefs and in seagrass beds, inshore and offshore of these reefs. It was found that lane snappers and bluestriped grunts showed diel movement from reef habitats during daytime hours to offshore seagrass bed at night. Timing of migrations was highly predictable and coincided with changes in sunrise and sunset over the course of the year. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. In April 2007, 21 additional receivers were deployed along much of the south shore of St. John (ca. 20 km of shoreline). This current array will address broader-scale movement among management units and examine the potential benefits of the VICRNM to provide adult “spillover” into VIIS and adjacent harvested areas. The results from this work will aid in defining fine to moderate spatial scales of reef fish habitat affinities and in designing and evaluating marine protected areas.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project.
Resumo:
Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.
Resumo:
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch and the U.S. National Park Service (NPS) have completed mapping the moderate-depth marine environment south of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean. The standardized protocols used in this effort will enable scientists and managers to quantitatively compare moderate-depth coral reef ecosystems around St. John to those throughout the U.S. Territories. These protocols and products will also help support the effective management and conservation of the marine resources within the National Park system.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.