35 resultados para Circadian cycle
em Aquatic Commons
Resumo:
Ephemera danica Müller, 1764 (Ephemeroptera) is one of the largest mayflies found in the British Isles with some females reaching over 30 mm. It is a common and widespread species found in rivers, lakes and streams throughout Europe and is particularly abundant in many of the lowland rivers of the British Isles. The larvae are burrowers – mainly found where silt accumulates below macrophytes. This article gives a general overview of research work on the factors affecting the life cycle of Ephemera danica over a seven year period (1995–2002) on two rivers, the River Test at Leckford in Hampshire and the North Wey at Tilford in Surrey.
Resumo:
Pisidium obtusale in the neighbourhood of Borka occurs in deep pools on upland bogs. The majority of water-bodies where this mollusc lives are temporary. Their bottoms are covered with sedges, and sometimes mosses occur. Evidently there is a marked attraction of P. obtusale to places overgrown by willow. In pools remote from scrub or woody vegetation it does not appear. Temporary water-bodies fill up with melt water in the middle or the end of April and finally dry up at the end of July or the beginning of August. Observations on the life cycle of P. obtusale started on 21 April 1966, following on the filling-up of the water-body by melt water. The findings of the study are presented in this paper.
Resumo:
The connection between the activity of the gonadotropic cells of the hypophysis and the neurosecretion in the pre-optico neuro-hypophysial system in different groups of vertebrates has been examined by many authors. It has been established that in many species there exists some kind of synchronism between the sexual cycle and the cellular activity of neurosecretion, a fact that has led to the prevailing idea that gonadotropic activity in the hypophysis is regulated by the hypothalamus. This paper summarises the results of experiments made in this direction on Cyclostomata. The materials for research came from adult individuals of Eudontomyson danfordi Regan taken from the rivers Somes-Rece and Ivo (Harghita district) at different times of the year.
Resumo:
The problem of the peculiar reproductive biology of the cladoceran Daphnia middendorffiana is investigated from a cytological viewpoint, and by direct observation the meiotic phenomena of the eggs both subitaneous and resting is studied. and during maturation, the true mechanism of the succession of reproductive phases of different ecological significance. Samples were collected in the Italian Alpine Lake of Campo 4°.
Resumo:
During hydrographic and plankton studies carried out since 1960 in the coastal zone between the Ebro and Castellon (western Mediterranean), data has been collected which confirms the importance of ciliates in the composition and activity of the plankton. The ciliates in 413 samples of 100 ml of water were counted, having been examined with the Utermohl microscope after sedimentation. The samples studied were distributed according to the density of their population. subject for study. The author concludes that recognition of the role of ciliates as an important link in the food chain of the sea would simplify the interpretation of certain problems posed by the nutrition of certain groups of planktonic animals.
Resumo:
The life cycle of the river lamprey, L. fluviatilis, is reviewed. The larval lamprey, or ammocoete, is a blind, filter-feeding animal, which normally lies concealed in the silt deposits of streams and rivers. After a period of 3-5 years in fresh water the ammocoete undergoes a metamorphosis in the summer months into a sexually immature, non-feeding stage known as the macrophthalia, which is active. This stage migrates downstream in late winter. It adopts a parasitic existence, in intertidal areas. After 18 months it returns to spawn in fresh water, after a final freshwater stage lasting up to 9 months. The river lamprey dies within a few days after the spawning period of 3-4 weeks, and none survive to spawn the following year.
Resumo:
River structure and functioning are governed naturally by geography and climate but are vulnerable to natural and human-related disturbances, ranging from channel engineering to pollution and biological invasions. Biological communities in river ecosystems are able to respond to disturbances faster than those in most other aquatic systems. However, some extremely strong or lasting disturbances constrain the responses of river organisms and jeopardise their extraordinary resilience. Among these, the artificial alteration of river drainage structure and the intense use of water resources by humans may irreversibly influence these systems. The increased canalisation and damming of river courses interferes with sediment transport, alters biogeochemical cycles and leads to a decrease in biodiversity, both at local and global scales. Furthermore, water abstraction can especially affect the functioning of arid and semi-arid rivers. In particular, interception and assimilation of inorganic nutrients can be detrimental under hydrologically abnormal conditions. Among other effects, abstraction and increased nutrient loading might cause a shift from heterotrophy to autotrophy, through direct effects on primary producers and indirect effects through food webs, even in low-light river systems. The simultaneous desires to conserve and to provide ecosystem services present several challenges, both in research and management.
Resumo:
This paper collects most of the information gathered between October 1974 and July 1976 within the framework of a research program concerning the hydrobioclimate of ivorian lagoons and especially the Ebrié lagoon. Monthly surveys concerning the latter were carried out during 1975. The following parameters - and their vertical distribution wherever it had a meaning - were systematically gathered in a system of fifty-five stations: Transparency (Secchi), Temperature, Salinity, Chlorophylla, Dissolved oxygen, phosphate, nitrate, nitrite. These data provide an outline of the annual cycle of nutrients and primary production of the Ivoirian lagoons
Resumo:
Changes in the seasonal development of the gonads of female Chrysichthys nigrodigitatus, in Ebrié lagoon (Côte d'Ivoire) are described over an annual reproductive cycle. Seven macroscopic stages of gonad maturity were identified. There is a major spawning period from July to November. The mature fish spawn only once during the breeding season. There was a slightly higher correlation between fecundity and fish length than between fecundity and fish weight or gonad weight. Fecundity estimates ranged from 5438 to 36257 eggs and from 4878 to 87724 eggs, respectively for the fish in captivity and those in the natural environment.
Resumo:
The evolution of the general microscopic structure of the ovary of Thunnus albacares related to the gonad index, and the ovocyte maturation process were studied. Some stages of the males sexual maturation were characterized.
Resumo:
Juvenile fish in temperate coastal oceans exhibit an annual cycle of feeding, and within this cycle, poor wintertime feeding can reduce body growth, condition, and perhaps survival, especially in food-poor areas. We examined the stomach contents of juvenile walleye pollock (Theragra chalcogramma) to explain previously observed seasonal and regional variation in juvenile body condition. Juvenile walleye pollock (1732 fish, 37–250 mm standard length) of the 2000 year class were collected from three regions in the Gulf of Alaska (Kodiak, Semidi, and Shumagin) representing an area of the continental shelf of ca. 100,000 km2 during four seasons (August 2000 to September 2001). Mean stomach content weight (SCW, 0.72% somatic body weight) decreased with fish body length except from winter to summer 2001. Euphausiids composed 61% of SCW and were the main determinant of seasonal change in the diets of fish in the Kodiak and Semidi regions. Before and during winter, SCW and the euphausiid dietary component were highest in the Kodiak region. Bioenergetics modeling indicated a relatively high growth rate for Kodiak juveniles during winter (0.33 mm standard length/d). After winter, Shumagin juveniles had relatively high SCW and, unlike the Kodiak and Semidi juveniles, exhibited no reduction in the euphausiid dietary component. These patterns explain previous seasonal and regional differences in body condition. We hypothesize that high-quality feeding locations (and perhaps nursery areas) shift seasonally in response to the availability of euphausiid
Resumo:
Commercial longline fishing data were analyzed and experiments were conducted with gear equipped with hook timers and timedepth recorders in the Réunion Island fishery (21°5ʹS lat., 53°28ʹE long.) to elucidate direct and indirect effects of the lunar cycle and other operational factors that affect catch rates, catch composition, fish behavior, capture time, and fish survival. Logbook data from 1998 through 2000, comprising 2009 sets, indicated that swordfish (Xiphias gladius) catch-per unit of effort (CPUE) increased during the first and last quarter of the lunar phase, whereas albacore (Thunnus alalunga) CPUE was highest during the full moon. Swordfish were caught rapidly after the longline was set and, like bigeye tuna (Thunnus obesus), they were caught during days characterized by a weak lunar illumination—mainly during low tide. We found a significant but very low influence of chemical lightsticks on CPUE and catch composition. At the time the longline was retrieved, six of the 11 species in the study had >40% survival. Hook timers indicated that only 8.4% of the swordfish were alive after 8 hours of capture, and two shark species (blue shark [Prionace glauca] and oceanic whitetip shark [Carcharhinus longimanus]) showed a greater resilience to capture: 29.3% and 23.5% were alive after 8 hours, respectively. Our results have implications for current fishing practices and we comment on the possibilities of modifying fishing strategies in order to reduce operational costs, bycatch, loss of target fish at sea, and detrimental impacts on the environment.
Resumo:
This contribution summarizes knowledge on the biology (population dynamics, reproduction, ecology) of 25 fish species from the Lower Amazon, Brazil, based on data from a Brazilian-German field project (IARA) and a review of the literature.
Resumo:
The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were obser ved during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages III through VI (SIII−SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round.