9 resultados para Choiseul Stainville, Louise Honorine Crozat, duchesse de, 1734-1801.
em Aquatic Commons
Resumo:
CONTENTS: From resource user to resource manager: a significant change story, by Ruperto Aleroza as told to Jocel Pangilinan and Ronet Santos. Significant change with Cambodian provincial livelihoods study teams, by Bun Hay Chheng, Tan Someth Bunwhat, Mey Chanthou and Bun Puthy. The Community Fisheries Development Office: one year on, by Matt Fox. CFDO open for business, by Louise Mackeson-Sandbach. Stakeholders and institutional involvement in aquaculture management and development, by M. Krishnan and Pratap S. Birthal. Fish seed production for aquaculture in southeast Cambodia: decentralization, the way to go, by Olivier Delahaye Gamucci, Graham C. Mair and Harvey Demaine.
Resumo:
Species selectivity of the aquatic herbicide dipotassium salt of endothall (Aquathol® K) was evaluated on plant species typically found in northern latitude aquatic plant communities. Submersed species included Eurasian watermilfoil (Myriophyllum spicatum L.), curlyleaf pondweed (Potamogeton crispus L.), Illinois pondweed (Potamogeton illinoensis Morong.), sago pondweed (Potamogeton pectinatus L.), coontail (Ceratophyllum demersum L.), elodea (Elodea canadensis Michx.) and wildcelery (Vallisneria americana L.). Emergent and floating-leaf plant species evaluated were cattail (Typha latifolia L.), smartweed (Polygonum hydropiperoides Michx.), pickerelweed (Pontederia cordata L.) and spatterdock (Nuphar advena Aiton). The submersed species evaluations were conducted in 7000 L mesocosm tanks, and treatment rates included 0, 0.5 1.0, 2.0, and 4.0 mg/L active ingredient (ai) endothall (dipotassium salt of endothall). The exposure period consisted of a 24-h flow through half-life for 7 d. The cattail and smartweed evaluation was conducted in 860 L mesocosm tanks, and the spatterdock and pickerelweed evaluations were conducted in 1600 L mesocosm tanks. Treatment rates for the emergent and floating-leafed plant evaluations included 0, 0.5, 2.0 and 4.0 mg/L ai endothall, and the exposure period consisted of removing and replacing half the water from each tank, after each 24 h period for a duration of 120 h. Biomass samples were collected at 3 and 8 weeks after treatment (WAT). Endothall effectively controlled Eurasian watermilfoil and curlyleaf pondweed at all of the application rates, and no significant regrowth was observed at 8 WAT. Sago pondweed, wildcelery, and Illinois pondweed biomass were also significantly reduced following the endothall application, but regrowth was observed at 8 WAT. Coontail and elodea showed no effects from endothall application at the 0.5, 1.0, and 2.0 mg/L application rates, but coontail was controlled at 4.0 mg/L rate. Spatterdock, pickerelweed, cattail, and smartweed were not injured at any of the endothall application rates.
Resumo:
The successful application of techniques to enhance detection of age marks in biological specimens is of vital importance in fisheries research. This manual documents age determination techniques used by staff at the Woods Hole Laboratory, National Marine Fisheries Service. General information on procedures for preparing anatomical structures is described, together with criteria used to interpret growth patterns and assign ages. Annotated photographs of age structures are provided to illustrate criteria. Detailed procedures are given for the following species: Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua), pollock (Pollachius virens), silver hake (Merluccius bilinearis), red hake (Urophycis chuss), black sea bass (Centropristis striata), weakfish (Cynoscion regalis), Atlantic mackerel (Scomber scombrus), butterfish (Peprilus triacanthus), redfish (Sebastes fasciatus), summer flounder (Paralichthys dentatus), winter flounder (Pseudopleuronectes americanus), witch flounder (Glyptocephalus cynoglossus), American plaice (Hippoglossoides platessoides), yellowtail flounder (Limanda ferruginea), surf clam (Spisula solidissima), and ocean quahog (Arctica islandica). (PDF file contains 142 pages.)
Resumo:
Donation Made in Memory of Last Grandchild of Ecuador's First President. Deaths of CDF Board Members. Major Gift by Mrs. Louise Van Straelen-Poirier. Itasca to Galápagos. Station Research Vessel.
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.
Resumo:
Este documento reproduce parte de la magnífica e importante obra del P. Francisco José Sánchez Labrador realizada durante su estadía en América desde su arribo en 1734 hasta la expulsión de la orden en 1767. Esta versión digital corresponde al libro editado por la Compañía General Fabril Editora S. A. en 1968 y cuyo manuscrito fuera preparado bajo la dirección del Dr. Mariano N. Castex (imagen).