4 resultados para Chitosan derivatives
em Aquatic Commons
Resumo:
process is described for the preparation of chitosan from prawn waste. The process involves extraction of protein using 0.5% sodium hydroxide solution, bleaching the protein free mass with bleach liquor containing 0.3-0.5% available chlorine followed by demineralisation with 1.25 N hydrochloric acid in the cold and deacetylation using 1:1 (w/w) sodium hydroxide solution at 100°C for 2 hours.
Resumo:
Squilla (Oratosquilla nepa) is abundant along the west coast of India, inhabiting burrows in sand and mud. The species is little used as it possesses little meat. There is great similarity between chemical composition of Squilla and prawn waste, and it is suggested that Squilla could therefore be used for making chitosan, a potential industrial chemical with various uses. Preparation of chitosan, and the general nature of the prepared product, is described.
Resumo:
Chitosan may be used to reduce the bacterial load of water. Material prepared according to the method of Radhakrishnan & Prahu described in Res. & Ind., 16(4), pp. 265, used in 1% solution in 1% acetic acid was added at 10 ppm level to contaminated water and allowed to stand for 45 min. Cultures of E. coli, Staphylococci and a mixture of the 2 were inoculated into ordinary and muddy water. Bacterial load was determined, and it is shown that chitosan has excellent qualities as a coagulant/water clarifying agent, especially for muddy waters or those contaminated with suspended matter or bacteria.
Resumo:
Chitosan from prawn waste was used for the removal of mercury from solutions. Mercuric chloride solutions containing 250, 500, 1000, 10000 and 100000 ng of Hg super(+2)/ml were treated with chitosan samples of different particle size for different periods. The effect of initial concentration of mercury in the solution, particle size of chitosan and time of treatment on the adsorption of Hg super(+2) was studied. The residual mercury content after treatment for ten min. with chitosan of 40 mesh size from a solution of initial concentration 10000 ng/ml was 10 ng/ml whereas it was 50 ng/ml for chitosan of larger particle size (10-20 mesh). From solutions of lower concentrations complete removal of mercury was possible by chitosan treatment. Though the particle size and time of treatment have significant effect, the concentration of mercury in solution is more influential on the removal of mercury from solution.