5 resultados para Cherry Hill
em Aquatic Commons
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
The economic, environmental and social benefits of more sensitive land use practices that protect or restore the natural functions of river catchments have been widely discussed. Changing land use has implications for a wide range of other biological communities. Some studies have already been undertaken on the benefits of sensitive farming at the catchment scale in England and Wales. However, there is a gap in these studies at the local scale, and particularly for upland farms from which headwaters arise. This article documents a case study relating to a successful partnership in Cumbria, UK, set within the wider context of catchment management. Whilst the case study is not highly detailed, and some costs have been described in outline only to protect confidentiality and commercial sensitivity, it provides some generic lessons and may therefore be useful in informing more sustainable policy-making. High Hullockhowe Farm near Haweswater, which was used a the case study highlighting changes in farm practise, costs and benefits, water resources and biodiversity. The authors relate the case study to wider policy implications.
Resumo:
Some biochemical variations during ovarian vitellogenic growth in hill-stream teleost Garra mullya due to sublethal concentration of cadmium has been discussed. Total protein, cholesterol and glycogen in ovary and liver along with gonadosomatic index (GSI) and hepatosomatic index (HSI) in Cd-treated fish exhibited significant decrease while liver glycogen remained unaltered.
Resumo:
The length-weight relationship of a hill-stream fish, Glyptothorax telchitta from Saptakoshi River of Nepal was analysed using the formula W=aLᵇ. The exponential values computed for total length and standard length in relation to body weight were 2.991 and 2.888 respectively.
Resumo:
Caudal neurosecretory system is an additional neuroendocrine system found in fishes. Great variation has been observed among different groups of fishes, so far its organization is concerned. Much work has been undertaken on the caudal neurosecretory system of elasmobranchs and teleosts. Large size scattered Dahlgren cells in the posterior end of spinal cord, corresponding to last few vertebrae, with long running axon process and a neurohaemal organ the urophysis are the characteristic features of the system. Although thoroughly investigated in fresh water carps, no work is reported in hill-stream fishes. In an attempt to investigate structure and organization of caudal neurosecretory system in hill-stream fishes, present investigation was undertaken in four hill-stream fish of Indian freshwater namely, Barilius bendelensis, Garra gotyla, Schizothorax plagiostomus and Tor tor. The organization of this system in hill-stream fishes was found to be quite different from that observed in fresh water carps. It displays an organization which is more close to the organization of caudal neurosecretory system observed in elasmobranchs. The features are described and discussed.