8 resultados para Chatham Rise

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A summary is presented of research conducted on beach erosion associated with extreme storms and sea level rise. These results were developed by the author and graduate students under sponsorship of the University of Delaware Sea Grant Program. Various shoreline response problems of engineering interest are examined. The basis for the approach is a monotonic equilibrium profile of the form h = Ax2 /3 in which h is water depth at a distance x from the shoreline and A is a scale parameter depending primarily on sediment characteristics and secondarily on wave characteristics. This form is shown to be consistent with uniform wave energy dissipation per unit volume. The dependency of A on sediment size is quantified through laboratory and field data. Quasi-static beach response is examined to represent the effect of sea level rise. Cases considered include natural and seawalled profiles. To represent response to storms of realistic durations, a model is proposed in which the offshore transport is proportional to the "excess" energy dissipation per unit volume. The single rate constant in this model was evaluated based on large scale wave tank tests and confirmed with Hurricane Eloise pre- and post-storm surveys. It is shown that most hurricanes only cause 10% to 25% of the erosion potential associated with the peak storm tide and wave conditions. Additional applications include profile response employing a fairly realistic breaking model in which longshore bars are formed and long-term (500 years) Monte Carlo simulation including the contributions due to sea level rise and random storm occurrences. (PDF has 67 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of coastal development in Hawaii is based on the location of the certified shoreline, which is representative of the upper limit of marine inundation within the last several years. Though the certified shoreline location is significantly more variable than long-term erosion indicators, its migration will still follow the coastline's general trend. The long-term migration of Hawaii’s coasts will be significantly controlled by rising sea level. However, land use decisions adjacent to the shoreline and the shape and nature of the nearshore environment are also important controls to coastal migration. Though each of the islands has experienced local sea-level rise over the course of the last century, there are still locations across the islands of Kauai, Oahu, and Maui, which show long- term accretion or anomalously high erosion rates relative to their regions. As a result, engineering rules of thumb such as the Brunn rule do not always predict coastal migration and beach profile equilibrium in Hawaii. With coastlines facing all points of the compass rose, anthropogenic alteration of the coasts, complex coastal environments such as coral reefs, and the limited capacity to predict coastal change, Hawaii will require a more robust suite of proactive coastal management policies to weather future changes to its coastline. Continuing to use the current certified shoreline, adopting more stringent coastal setback rules similar to Kauai County, adding realistic sea-level rise components for all types of coastal planning, and developing regional beach management plans are some of the recommended adaptation strategies for Hawaii. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise and inundation were stated to be the highest priorities in the community-developed Ocean Research Priorities Plan and Implementation Strategy in 2005. Although they remain stated priorities, very few resources have been allocated towards this challenge. Inundation poses a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise along our vulnerable shorelines. (PDF contains 4 pages) There is an increasing urgency for federal and state governments to focus on the local and regional levels and consistently provide the information, tools, and methods necessary for adaptation. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. A workshop held in December 2000 on coastal inundation and sea level rise proposes a shared framework that can help guide where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise (SLR) assessments are commonly used to identify the extent that coastal populations are at risk to flooding. However, the data and assumptions used to develop these assessments contain numerous sources and types of uncertainty, which limit confidence in the accuracy of modeled results. This study illustrates how the intersection of uncertainty in digital elevation models (DEMs) and SLR lead to a wide range of modeled outcomes. SLR assessments are then reviewed to identify the extent that uncertainty is documented in peer-reviewed articles. The paper concludes by discussing priorities needed to further understand SLR impacts. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of sea level change has varied considerably over geological time, with rapid increases (0.25 cm yr-1) at the end of the last ice age to more modest increases over the last 4,000 years (0.04 cm yr-1; Hendry 1993). Due to anthropogenic contributions to climate change, however, the rate of sea level rise is expected to increase between 0.10 and 0.25 cm year-1 for many coastal areas (Warrick et al. 1996). Notwithstanding, it has been predicted that over the next 100 years, sea levels along the northeastern coast of North Carolina may increase by an astonishing 0.8 m (0.8 cm yr-1); through a combination of sea-level rise and coastal subsidence (Titus and Richman 2001; Parham et al. 2006). As North Carolina ranks third in the United States with land at or just above sea level, any additional sea rise may promote further deterioration of vital coastal wetland systems. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many coastal communities across the United States are beginning to plan for climate-related sea level rise. While impacts and solutions will vary with local conditions, jurisdictions which have begun this process seem to pass through three common stages when developing policy for local sea level rise adaptation: l) building awareness about local sea level rise threats, 2) undertaking analyses of local vulnerabilities, and 3) developing plans and policies to deal with these vulnerabilities. The purpose of this paper is to help advance community dialogue and further inform local decision-makers about key elements and steps for addressing climate-related sea level rise. It summarizes the results of a project the Marine Policy Institute (MPI) undertook during 2011-12 to review experiences from fourteen U.S. coastal jurisdictions representing a variety of city, county, and state efforts with sea level adaptation. There are many more initiatives underway than those reflected in this sample, but the “focus jurisdictions” were selected because of the extensive information publically available on their experiences and lessons being learned that could provide insights for coastal communities, especially in Southwest Florida.