4 resultados para Chaotic attractor
em Aquatic Commons
Resumo:
This note describes changes to the relative extent of four structurally dominant submerged macrophytes in a pond on Holy Island National Nature Reserve, Northumbria, between 1991 and 1998. The estimated extent of the four submerged macrophytes and bare substratum between 1991 and 1998 showed dramatic changes with no obvious pattern or periodicity, as well as no identifiable natural or anthropogenic causes. Chaotic variation may be an important character of submerged pond plant populations, so that surveys taken in a single year may give an unreliable picture of plant populations.
Resumo:
Restoration of water-bodies from eutrophication has proved to be extremely difficult. Mathematical models have been used extensively to provide guidance for management decisions. The aim of this paper is to elucidate important problems of using models for predicting environmental changes. First, the necessity for a proper uncertainty assessment of the model, upon calibration, has not been widely recognized. Predictions must not be a single time trajectory; they should be a band, expressing system uncertainty and natural variability. Availability of this information may alter the decision to be taken. Second, even with well-calibrated models, there is no guarantee they will give correct projections in situations where the model is used to predict the effects of measures designed to bring the system into an entirely different ”operating point”, as is typically the case in eutrophication abatement. The concept of educated speculation is introduced to partially overcome this difficulty. Lake Veluwe is used as a case to illustrate the point. Third, as questions become more detailed, such as ”what about expected algal composition”, there is a greater probability of running into fundamental problems that are associated with predicting the behaviour of complex non-linear systems. Some of these systems show extreme initial condition sensitivity and even, perhaps, chaotic behaviour, and are therefore fundamentally unpredictable.
Resumo:
This paper outlines developments over about 20 years in the construction of and ecological research on artificial reefs, fish aggregation devices (FAD's), and other artificial habitats designed to enhance fish populations and fisheries in the Australian region (including New Zealand and Papua New Guinea). Work was initially carried out on multicomponent reefs using a variety of waste materials, as well as some specially constructed concrete and steel structures. Later studies concentrated on single-component reefs, again mainly using waste materials. Although no definitive conclusions were reached on the relative effectiveness of the different materials used, waste motor vehicle tires and derelict ships were generally judged to be the best all-around materials for single-component reef construction in sheltered estuarine and offshore marine environments, respectively, in this region. FAD's comprising polyvinylchloride pipe sparbuoys (or in some areas polyurethane foam floats) attached to railroad car wheel anchors by polyethylene rope and chain, and supporting attractor drapes of synthetic mesh webbing, also provedtobegenerallysuccessfulin thisarea. Overall conclusions for the Australian region include the predominant use of waste materials in artificial reef construction, which has been primarily aimed at recreational fisheries enhancement; the successful use of FAD's for both recreational and commercial fisheries enhancement; the need for further and better planned research into and monitoring of the effectiveness of both of these enhancement methods; and the need for future research into the effectiveness of unfished "artificial habitat reserves" in enhancing fisheries production from surrounding fished areas.
Resumo:
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods that can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.