4 resultados para Chaos
em Aquatic Commons
Resumo:
As defined, the modeling procedure is quite broad. For example, the chosen compartments may contain a single organism, a population of organisms, or an ensemble of populations. A population compartment, in turn, could be homogeneous or possess structure in size or age. Likewise, the mathematical statements may be deterministic or probabilistic in nature, linear or nonlinear, autonomous or able to possess memory. Examples of all types appear in the literature. In practice, however, ecosystem modelers have focused upon particular types of model constructions. Most analyses seem to treat compartments which are nonsegregated (populations or trophic levels) and homogeneous. The accompanying mathematics is, for the most part, deterministic and autonomous. Despite the enormous effort which has gone into such ecosystem modeling, there remains a paucity of models which meets the rigorous &! validation criteria which might be applied to a model of a mechanical system. Most ecosystem models are short on prediction ability. Even some classical examples, such as the Lotka-Volterra predator-prey scheme, have not spawned validated examples.
Resumo:
I REPORT OF THE PICES WORKSHOP ON THE OKHOTSK SEA AND ADJACENT AREAS (pdf, 0.1 Mb) 1. Outline of the workshop 2. Summary reports from sessions 3. Recommendations of the workshop 4. Acknowledgments II SCIENTIFIC PAPERS SUBMITTED FROM SESSIONS 1. Physical Oceanography Sessions (pdf, 4 Mb) A. Circulation and water mass structure of the Okhotsk Sea and Northwestern Pacific Valentina D. Budaeva & Vyacheslav G. Makarov Seasonal variability of the pycnocline in La Perouse Strait and Aniva Gulf Valentina D. Budaeva & Vyacheslav G. Makarov Modeling of the typical water circulations in the La Perouse Strait and Aniva Gulf region Nina A. Dashko, Sergey M. Varlamov, Young-Ho Han & Young-Seup Kim Anticyclogenesis over the Okhotsk Sea and its influence on weather Boris S. Dyakov, Alexander A. Nikitin & Vadim P. Pavlychev Research of water structure and dynamics in the Okhotsk Sea and adjacent Pacific Howard J. Freeland, Alexander S. Bychkov, C.S. Wong, Frank A. Whitney & Gennady I. Yurasov The Ohkotsk Sea component of Pacific Intermediate Water Emil E. Herbeck, Anatoly I. Alexanin, Igor A. Gontcharenko, Igor I. Gorin, Yury V. Naumkin & Yury G. Proshjants Some experience of the satellite environmental support of marine expeditions at the Far East Seas Alexander A. Karnaukhov The tidal influence on the Sakhalin shelf hydrology Yasuhiro Kawasaki On the formation process of the subsurface mixed water around the Central Kuril Islands Lloyd D. Keigwin Northwest Pacific paleohydrography Talgat R. Kilmatov Physical mechanisms for the North Pacific Intermediate Water formation Vladimir A. Luchin Water masses in the Okhotsk Sea Andrey V. Martynov, Elena N. Golubeva & Victor I. Kuzin Numerical experiments with finite element model of the Okhotsk Sea circulation Nikolay A. Maximenko, Anatoly I. Kharlamov & Raissa I. Gouskina Structure of Intermediate Water layer in the Northwest Pacific Nikolay A. Maximenko & Andrey Yu. Shcherbina Fine-structure of the North Pacific Intermediate Water layer Renat D. Medjitov & Boris I. Reznikov An experimental study of water transport through the Straits of Okhotsk Sea by electromagnetic method Valentina V. Moroz Oceanological zoning of the Kuril Islands area in the spring-summer period Yutaka Nagata Note on the salinity balance in the Okhotsk Sea Alexander D. Nelezin Variability of the Kuroshio Front in 1965-1991 Vladimir I. Ponomarev, Evgeny P. Varlaty & Mikhail Yu. Cheranyev An experimental study of currents in the near-Kuril region of the Pacific Ocean and in the Okhotsk Sea Stephen C. Riser, Gennady I. Yurasov & Mark J. Warner Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring Konstantin A. Rogachev & Andrey V. Verkhunov Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer, 1994 Lynne D. Talley North Pacific Intermediate Water formation and the role of the Okhotsk Sea Anatoly S. Vasiliev & Fedor F. Khrapchenkov Seasonal variability of integral water circulation in the Okhotsk Sea B. Sea ice and its relation to circulation and climate V.P. Gavrilo, G.A. Lebedev & A.P. Polyakov Acoustic methods in sea ice dynamics studies Nina M. Pestereva & Larisa A. Starodubtseva The role of the Far-East atmospheric circulation in the formation of the ice cover in the Okhotsk Sea Yoshihiko Sekine Anomalous Oyashio intrusion and its teleconnection with Subarctic North Pacific circulation, sea ice of the Okhotsk Sea and air temperature of the northern Asian continent C. Waves and tides Vladimir A. Luchin Characteristics of the tidal motions in the Kuril Straits George V. Shevtchenko On seasonal variability of tidal constants in the northwestern part of the Okhotsk Sea D. Physical oceanography of the Japan Sea/East Sea Mikhail A. Danchenkov, Kuh Kim, Igor A. Goncharenko & Young-Gyu Kim A “chimney” of cold salt waters near Vladivostok Christopher N.K. Mooers & Hee Sook Kang Preliminary results from a numerical circulation model of the Japan Sea Lev P. Yakunin Influence of ice production on the deep water formation in the Japan Sea 2. Fisheries and Biology Sessions (pdf, 2.8 Mb) A. Communities of the Okhotsk Sea and adjacent waters: composition, structure and dynamics Lubov A. Balkonskaya Exogenous succession of the southwestern Sakhalin algal communities Tatyana A. Belan, Yelena V. Oleynik, Alexander V. Tkalin & Tat’yana S. Lishavskaya Characteristics of pelagic and benthic communities on the North Sakhalin Island shelf Lev N. Bocharov & Vladimir K. Ozyorin Fishery and oceanographic database of Okhotsk Sea Victor V. Lapko Interannual dynamics of the epipelagic ichthyocen structure in the Okhotsk Sea Valentina I. Lapshina Quantitative seasonal and year-to-year changes of phytoplankton in the Okhotsk Sea and off Kuril area of the Pacific Lyudmila N. Luchsheva Biological productivity in anomalous mercury conditions (northern part of Okhotsk Sea) Inna A. Nemirovskaya Origin of hydrocarbons in the ecosystems of coastal region of the Okhotsk Sea Tatyana A. Shatilina Elements of the Pacific South Kuril area ecosystem Vyacheslav P. Shuntov & Yelena P. Dulepova Biota of the Okhotsk Sea: Structure of communities, the interannual dynamics and current status B. Abundance, distribution, dynamics of the common fishes of the Okhotsk Sea Yuri P. Diakov Influence of some abiotic factors on spatial population dynamics of the West Kamchatka flounders (Pleuronectidae) Gordon A. McFarlane, Richard J. Beamish & Larisa M. Zverkova An examination of age estimates of walleye pollock (Theragra chalcogramma) from the Sea of Okhotsk using the burnt otolith method and implications for stock assessment and management Larisa P. Nikolenko Migration of Greenland turbot (Reinhardtius hippoglossoides) in the Okhotsk Sea Galina M. Pushnikova Fisheries impact on the Sakhalin-Hokkaido herring population Vidar G. Wespestad Is pollock overfished? C. Salmon of the Okhotsk Sea: biology, abundance and stock identification Vladimir A. Belyaev, Alexander Yu. Zhigalin Epipelagic Far Eastern sardine of the Okhotsk Sea Yuri E. Bregman, Victor V. Pushnikov, Lyudmila G. Sedova & Vladimir Ph. Ivanov A preliminary report on stock status and productive capacity of horsehair crab Erimacrus isenbeckii (Brandt) in the South Kuril Strait Natalia T. Dolganova Mezoplankton distribution in the West Japan Sea Vladimir V. Efremov, Richard L. Wilmot, Christine M. Kondzela, Natalia V. Varnavskaya, Sharon L. Hawkins & Maria E. Malinina Application of pink and chum salmon genetic baseline to fishery management Vyacheslav N. Ivankov & Valentina V. Andreyeva Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations Alla M. Kovalevskaya, Natalia I. Savelyeva & Dmitry M. Polyakov Primary production in Sakhalin shelf waters Tatyana N. Krupnova Some reasons for resource reduction of Laminaria japonica (Primorye region) Lyudmila N. Luchsheva & Anatoliy I. Botsul Mercury in bottom sediments of the northeastern Okhotsk Sea Pavel A. Luk’yanov, Natalia I. Belogortseva, Alexander A. Bulgakov, Alexander A. Kurika & Olga D. Novikova Lectins and glycosidases from marine macro and micro-organisms of Japan and Okhotsk Seas Boris A. Malyarchuk, Olga A. Radchenko, Miroslava V. Derenko, Andrey G. Lapinski & Leonid L. Solovenchuk PCR-fingerprinting of mitochondrial genome of chum salmon, Oncorhynchus keta Alexander A. Mikheev Chaos and relaxation in dynamics of the pink salmon (Oncorhynchus gorbuscha) returns for two regions Yuri A. Mitrofanov & Larisa N. Lesnikova Fish-culture of Pacific Salmons increases the number of heredity defects Larisa P. Nikolenko Abundance of young halibut along the West Kamchatka shelf in 1982-1992 Sergey A. Nizyaev Living conditions of golden king crab Lithodes aequispina in the Okhotsk Sea and near the Kuril Islands Ludmila A. Pozdnyakova & Alla V. Silina Settlements of Japanese scallop in Reid Pallada Bay (Sea of Japan) Galina M. Pushnikova Features of the Southwest Okhotsk Sea herring Vladimir I. Radchenko & Igor I. Glebov Present state of the Okhotsk herring stock and fisheries outlook Alla V. Silina & Ida I. Ovsyannikova Distribution of the barnacle Balanus rostratus eurostratus near the coasts of Primorye (Sea of Japan) Galina I. Victorovskaya Dependence of urchin Strongylocentrotus intermedius reproduction on water temperature Anatoly F. Volkov, Alexander Y. Efimkin & Valery I. Chuchukalo Feeding habits of Pacific salmon in the Sea of Okhotsk and in the Pacific waters of Kuril Islands in summer 1993 Larisa M. Zverkova & Georgy A. Oktyabrsky Okhotsk Sea walleye pollock stock status Tatyana N. Zvyagintseva, Elena V. Sundukova, Natalia M. Shevchenko & Ludmila A. Elyakova Water soluble polysaccharides of some Far-Eastern seaweeds 3. Biodiversity Program (pdf, 0.2 Mb) A. Biodiversity of island ecosystems and seasides of the North Pacific Larissa A. Gayko Productivity of Japanese scallop Patinopecten yessoensis (IAY) culture in Posieta Bay (Sea of Japan) III APPENDICES 1. List of acronyms 2. List of participants (Document pdf contains 431 pages)
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods that can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.