82 resultados para Chaoborus predation
em Aquatic Commons
Resumo:
Study on the interactions between marine mammals or marine birds and fisheries in the PICES region of interest. (PDF contains 168 pages)
Resumo:
A study/predation control program was conducted at the Hiram M. Chittenden Locks in Seattle, Washington from 20 December through 23 April 1986. The principal objectives were to document the rate and effects of predation on winter-run steelhead (Salmo gairdneri Richardson) by California sea lions (Zalophus californianus); to control and minimize predation in order to increase the escapement of wild winter-runs to the Lake Washington watershed; to evaluate and recommend potential long term procedures for control of steelhead predation; and to document the abundance and distribution of California sea lions in Puget Sound.
Resumo:
The Goggausee, a small, shallow, meromictic lake(700m long, 150m wide, max. depth=12m, mean depth=6m), was the site of a week long study (19-26 May 1974) of the limnology department of the University of Vienna. The study comprised pollen analysis and palaeolimnological studies on the one hand, as well as a stock- taking of physiochemical factors, primary production, bacteria, zooplankton, zoo benthos and fish on the other. This paper studies the zooplankton of the lake. The Goggausee is a meromictic lake, with its anoxic deep water, that restricts the vertical distribution of most zooplankton. The aim of the study was to pursue the vertical distribution of the rotifers and Crustacea. Density of individuals, biomass, percentages of zooplankton together and crustaceans and rotifers as groups. Special consideration is given to the the Dipteran Chaoborus flavicans.
Resumo:
The Goggausee, in spite of its modest depth (Zmax = 12 metres), shows meromictic properties: autumn and spring circulation extend only to a depth of 8 metres. The water layers below about 10 metres are constantly oxygen-free, the critical zone with at least intermittent oxygen loss lies at a depth of between 6 and 10 metres. A limnological excursion in May 1974 offered an opportunity to investigate the daily vertical migration of the species Chaoborus flavicans with reference to its food supply of zooplankton as well as the chance to carry out some preliminary experiments on its rate of food intake. Among the studied features were the planktonic depth distribution of Chaoborus flavicans and the food intake of Chaoborus larvae under experimental conditions.
Resumo:
Zooplankton was studied in four alpine lakes in Switzerland, France and Italy. The presence the presence of the invertebrate predator Heterocope in three lakes was stated. It is then discussed why in three of these four lakes, the copepod Arctodiaptomus denticornis is present in the absence of Arctodiaptomus bacillifer, and vice versa respectively in the second and first parts of the lacustrine summer.
Resumo:
The diet and daily ration of the shortfin mako (Isurus oxyrinchus) in the northwest Atlantic were re-examined to determine whether fluctuations in prey abundance and availability are reflected in these two biological variables. During the summers of 2001 and 2002, stomach content data were collected from fishing tournaments along the northeast coast of the United States. These data were quantified by using four diet indices and were compared to index calculations from historical diet data collected from 1972 through 1983. Bluefish (Pomatomus saltatrix) were the predominant prey in the 1972–83 and 2001–02 diets, accounting for 92.6% of the current diet by weight and 86.9% of the historical diet by volume. From the 2001– 02 diet data, daily ration was estimated and it indicated that shortfin makos must consume roughly 4.6% of their body weight per day to fulfill energetic demands. The daily energetic requirement was broken down by using a calculated energy content for the current diet of 4909 KJ/kg. Based on the proportional energy of bluefish in the diet by weight, an average shortfin mako consumes roughly 500 kg of bluefish per year off the northeast coast of the United States. The results are discussed in relation to the potential effect of intense shortfin mako predation on bluefish abundance in the region.
Resumo:
Humpback whales (Megaptera novaeangliae) are significant marine consumers. To examine the potential effect of predation by humpback whales, consumption (kg of prey daily) and prey removal (kg of prey annually) were modeled for a current and historic feeding aggregation of humpback whales off northeastern Kodiak Island, Alaska. A current prey biomass removal rate was modeled by using an estimate of the 2002 humpback whale abundance. A historic rate of removal was modeled from a prewhaling abundance estimate (population size prior to 1926). Two provisional humpback whale diets were simulated in order to model consumption rate. One diet was based on the stomach contents of whales that were commercially harvested from Port Hobron whaling station in Kodiak, Alaska, between 1926 and 1937, and the second diet, based on local prey availability as determined by fish surveys conducted within the study area, was used to model consumption rate by the historic population. The latter diet was also used to model consumption by the current population and to project a consumption rate if the current population were to grow to reach the historic population size. Models of these simulated diets showed that the current population likely removes nearly 8.83
Resumo:
The increase in harbor seal (Phoca vitulina richardsi) abundance, concurrent with the decrease in salmonid (Oncorhynchus spp.) and other fish stocks, raises concerns about the potential negative impact of seals on fish populations. Although harbor seals are found in rivers and estuaries, their presence is not necessarily indicative of exclusive or predominant feeding in these systems. We examined the diet of harbor seals in the Umpqua River, Oregon, during 1997 and 1998 to indirectly assess whether or not they were feeding in the river. Fish otoliths and other skeletal structures were recovered from 651 scats and used to identify seal prey. The use of all diagnostic prey structures, rather than just otoliths, increased our estimates of the number of taxa, the minimum number of individuals and percent frequency of occurrence (%FO) of prey consumed. The %FO indicated that the most common prey were pleuronectids, Pacific hake (Merluccius productus), Pacific stag-horn sculpin (Leptocottus armatus), osmerids, and shiner surfperch (Cymatogaster aggregata). The majority (76%) of prey were fish that inhabit marine waters exclusively and fish found in marine and estuarine areas (e.g. anadromous spp.) which would indicate that seals forage predominantly at sea and use the estuary for resting and opportunistic feeding. Salmonid remains were encountered in 39 samples (6%); two samples contained identifiable otoliths, which were determined to be from chi-nook salmon (O. tshawytscha). Because of the complex salmonid composition in the Umpqua River, we used molecular genetic techniques on salmonid bones retrieved from scat to discern species that were rare from those that were abundant. Of the 37 scats with salmonid bones but no otoliths, bones were identified genetically as chinook or coho (O. kisutch) salmon, or steelhead trout (O. mykiss) in 90% of the samples.
Resumo:
Over the past few years, pop-up satellite archival tags (PSATs) have been used to investigate the behavior, movements, thermal biology, and postrelease mortality of a wide range of large, highly migratory species including bluefin tuna (Block et al., 2001), swordfish (Sedberry and Loefer, 2001), blue marlin (Graves et al., 2002), striped marlin (Domeier and Dewar, 2003), and white sharks (Boustany et al., 2002). PSAT tag technology has improved rapidly, and current tag models are capable of collecting, processing, and storing large amounts of information on light level, temperature, and pressure (depth) for a predetermined length of time before the release of these tags from animals. After release, the tags float to the surface, and transmit the stored data to passing satellites of the Argos system.