2 resultados para Chance-constrained model
em Aquatic Commons
Resumo:
Many modern stock assessment methods provide the machinery for determining the status of a stock in relation to certain reference points and for estimating how quickly a stock can be rebuilt. However, these methods typically require catch data, which are not always available. We introduce a model-based framework for estimating reference points, stock status, and recovery times in situations where catch data and other measures of absolute abundance are unavailable. The specif ic estimator developed is essentially an age-structured production model recast in terms relative to pre-exploitation levels. A Bayesian estimation scheme is adopted to allow the incorporation of pertinent auxiliary information such as might be obtained from meta-analyses of similar stocks or anecdotal observations. The approach is applied to the population of goliath grouper (Epinephelus itajara) off southern Florida, for which there are three indices of relative abundance but no reliable catch data. The results confirm anecdotal accounts of a marked decline in abundance during the 1980s followed by a substantial increase after the harvest of goliath grouper was banned in 1990. The ban appears to have reduced fishing pressure to between 10% and 50% of the levels observed during the 1980s. Nevertheless, the predicted fishing mortality rate under the ban appears to remain substantial, perhaps owing to illegal harvest and depth-related release mortality. As a result, the base model predicts that there is less than a 40% chance that the spawning biomass will recover to a level that would produce a 50% spawning potential ratio.
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.