19 resultados para Central Valley Project (Calif.)

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project fact sheet prepared in cooperation with the USDA Natural Resources Conservation Service and the Kings River Conservation District.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report covers the 37th annual inventory of chinook salman, Oncorhynchus tshawytscha, spawner populations in the Sacramento-San Joaquin River system.-It is a compilation of reports estimating the fall-, winter-, late-fall-, and spring-run salmon spawner populations for streams which were surveyed. Estimates were made from counts of fish entering hatcheries and migrating past dams, froro surveys of dead and live fish and redds on spawning areas, and from aerial counts. The estimated 1989 total escapement of chinook salmon in the Central Valley was 205,990 fish. This total consisted of 181,864 fall-, 12,171 spring-, 539 winter-, and 11,416 late-fall-run spawners. All of the spring-, late-fall-, and winter-run salmon were estimated to be in the Sacramento River system, while 3,493 fish of the fall run were in the San Joaquin River system. Due to decreases of spawner populations in most Central Valley tributaries, the total 1989 salmon stock was 32% lower than in 1988; however, late-fall salmon in the upper Sacramento River had a run size similar to that of 1988. The winter run in the mainstem Sacramento River was at a record low level. (PDF contains 44 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report covers the 39th annual inventory of chinook salman, Oncorhynchus tshawytscha, spawner populations in the Sacramento-San Joaquin River system." It is a compilation of reports estimating the fall-, winter-, late-fall-, and spring-run salman spawner populatiens fer streams which were surveyed. Estimates were made from counts of fish entering hatcheries and migrating past dams, from surveys of dead and live fish and redds on spawning areas, and from aerial counts. The estimated 1991 total escapement of chinook salmon in the Central Valley was 147,080 fish. This total consisted of 132,571 fall-, 5,921 spring-, 190 winter-, and 8,398 late-fall-run spawners. All of the spring-, late-fall-, and winter-run salmon were estimated to be in the Sacramento River system, while 1,176 fish of the fall run were in the San Joaquin River system. Spawner populations in all individual tributaries (except the American River) and the Sacramento River mainstem were lower than in 1990; but it should be noted that fall run populations in the Feather and Yuba rivers, two of the larger tributaries, were not surveyed that year. The winter run in the mainstem Sacramento River was at a record low level. (PDF contains 42 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile chinook salmon, Oncorhynchus tshawytscha, from natal streams in California’s Central Valley demonstrated little estuarine dependency but grew rapidly once in coastal waters. We collected juvenile chinook salmon at locations spanning the San Francisco Estuary from the western side of the freshwater delta—at the confluence of the Sacramento and San Joaquin Rivers—to the estuary exit at the Golden Gate and in the coastal waters of the Gulf of the Farallones. Juveniles spent about 40 d migrating through the estuary at an estimated rate of 1.6 km/d or faster during their migration season (May and June 1997) toward the ocean. Mean growth in length (0.18 mm/d) and weight (0.02 g/d) was insignificant in young chinook salmon while in the estuary, but estimated daily growth of 0.6 mm/d and 0.5 g/d in the ocean was rapid (P≤0.001). Condition (K factor) declined in the estuary, but improved markedly in ocean fish. Total body protein, total lipid, triacylglycerols (TAG), polar lipids, cholesterol, and nonesterified fatty acids concentrations did not change in juveniles in the estuary, but total lipid and TAG were depleted in ocean juveniles. As young chinook migrated from freshwater to the ocean, their prey changed progressively in importance from invertebrates to fish larvae. Once in coastal waters, juvenile salmon appear to employ a strategy of rapid growth at the expense of energy reserves to increase survival potential. In 1997, environmental conditions did not impede development: freshwater discharge was above average and water temperatures were only slightly elevated, within the species’ tolerance. Data suggest that chinook salmon from California’s Central Valley have evolved a strong ecological propensity for a ocean-type life history. But unlike populations in the Pacific Northwest, they show little estuarine dependency and proceed to the ocean to benefit from the upwelling-driven, biologically productive coastal waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a report to the California Department of Fish and Game. Between 2003 and 2008, the Foundation of CSUMB produced fish habitat maps and GIS layers for CDFG based on CDFG field data. This report describes the data entry, mapping, and website construction procedures associated with the project. Included are the maps that have been constructed. This report marks the completion of the Central Coast region South District Basin Planning and Habitat Mapping Project. (Document contains 40 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Redd counting is an integral part of most Fishery Officers duties. The number and distribution of salmonid redds throughout salmonid catchments provides invaluable information on the range and extent of spawning by both salmon and sea trout. A project was initiated by the Fisheries Science and Management Team of Central Area, North West Region in England in liaison with the Flood Defence function. The main objective of this project was to assess redd count data for Central Area and attempt to quantify these data in order to produce a grading system that would highlight key salmonid spawning areas. By showing which were the main areas for salmon and sea trout spawning, better informed decisions could be made on whether or not in-stream Flood Defence works should be given the go-ahead. The main salmonid catchments in Central Area were broken into individual reaches, approximately 1 km in length. The number of redds in these individual reaches were then calculated and a density per lkm value was obtained for each reach. A grading system was devised which involved looking at the range of density per km values and dividing this by five to produce 5 classes, A - E. A sixth class (F) was used where the density per Ion value was 0.00. This grading system was calculated at two levels of detail. Grades for salmon and sea trout were produced for each individual catchment and also on an Area-wide level. Maps were produced using a range of colours to represent the grade for each reach. These maps provide a highly useful overview of the status of salmonid spawning for each catchment over individual years and highlight the key salmon and sea trout spawning areas in each catchment. These maps and the associated summary data should now provide Flood Defence and Fisheries staff with a fairly detailed overview of the status of spawning in any location within the. main salmonid catchments in Central Area. Although these maps are very useful they should only be used as a guide. The current practice of consulting with the local Fishery Officer should be continued to ensure that expert local knowledge is taken into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is the Investigation of rising nitrate concentrations in groundwater in the Eden Valley, Cumbria report produced by the Environment Agency in 2003. This report focuses on groundwater nitrate concentrations in the Eden Valley. Most boreholes in the Eden Valley had nitrate concentrations less than 20 mg/l but a significant number had higher concentrations, some exceeding the EC maximum admissible concentration for drinking water of 50 mg/l. The main objectives of this report were to investigate the causes of rising nitrate concentrations in groundwater in the Permo-Triassic sandstone aquifers of the Eden Valley area and provide sufficient understanding of the groundwater and surface water flow system, including the sources of the nitrate contamination and the processes controlling nitrate movement, so that possible management options for reversing this trend can be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this project was to gather information on wetland restoration projects in the Moro Bay, California, region. Data provided to the San Francisco Estuary Institute (SFEI) will be used to enhance a web-based, public access database, the Bay Area Wetland Project Tracker. Wetland Tracker provides information on the location, size, sponsors, habitats, contact persons, and status of included projects. Its website provides an interactive map of planned and completed wetland projects (http://www.wetlandtracker.org). (Document contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In summer and fall 2004, the California Department of Parks and Recreation (DPR) initiated the Carmel River Lagoon Enhancement Project. The project involved excavation of a dry remnant Arm of the lagoon and adjacent disused farmland to form a significant new lagoon volume. The intention was to provide habitat, in particular, for two Federally threatened species: the California Red-Legged Frog, and the Steelhead Trout (South Central-Coastal California Evolutionary Significant Unit). DPR contracted with the Foundation of California State University Monterey Bay (Central Coast Watershed Studies Team, Watershed Institute) to monitor water quality and aquatic invertebrates in association with the enhancement, and to attempt to monitor steelhead using novel video techniques. The monitoring objective was to assess whether the enhancement was successful in providing habitat with good water quality, adequate invertebrate food for steelhead, and ultimately the presence of steelhead. (Document contains 102 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.)